--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.96771714066103 - name: Recall type: recall value: 0.9774844720496895 - name: F1 type: f1 value: 0.9725762842796446 - name: Accuracy type: accuracy value: 0.9711375212224108 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.1836 - Precision: 0.9677 - Recall: 0.9775 - F1: 0.9726 - Accuracy: 0.9711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.25 | 100 | 0.5222 | 0.8284 | 0.8773 | 0.8522 | 0.8680 | | No log | 2.5 | 200 | 0.2594 | 0.9147 | 0.9488 | 0.9314 | 0.9393 | | No log | 3.75 | 300 | 0.2472 | 0.9294 | 0.9511 | 0.9401 | 0.9448 | | No log | 5.0 | 400 | 0.1958 | 0.9496 | 0.9651 | 0.9573 | 0.9580 | | 0.4078 | 6.25 | 500 | 0.2005 | 0.9547 | 0.9658 | 0.9602 | 0.9597 | | 0.4078 | 7.5 | 600 | 0.2083 | 0.9555 | 0.9674 | 0.9614 | 0.9631 | | 0.4078 | 8.75 | 700 | 0.2104 | 0.9608 | 0.9697 | 0.9652 | 0.9631 | | 0.4078 | 10.0 | 800 | 0.1793 | 0.9685 | 0.9775 | 0.9730 | 0.9724 | | 0.4078 | 11.25 | 900 | 0.1972 | 0.9646 | 0.9744 | 0.9695 | 0.9686 | | 0.0332 | 12.5 | 1000 | 0.1836 | 0.9677 | 0.9775 | 0.9726 | 0.9711 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1