--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9587155963302753 - name: Recall type: recall value: 0.9736024844720497 - name: F1 type: f1 value: 0.9661016949152543 - name: Accuracy type: accuracy value: 0.9656196943972836 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.2067 - Precision: 0.9587 - Recall: 0.9736 - F1: 0.9661 - Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 3.7313 | 250 | 0.6302 | 0.8384 | 0.8742 | 0.8559 | 0.8633 | | 1.0061 | 7.4627 | 500 | 0.3168 | 0.9144 | 0.9457 | 0.9298 | 0.9372 | | 1.0061 | 11.1940 | 750 | 0.2460 | 0.9444 | 0.9620 | 0.9531 | 0.9533 | | 0.1885 | 14.9254 | 1000 | 0.2109 | 0.9534 | 0.9689 | 0.9611 | 0.9622 | | 0.1885 | 18.6567 | 1250 | 0.2030 | 0.9571 | 0.9705 | 0.9638 | 0.9618 | | 0.0721 | 22.3881 | 1500 | 0.1985 | 0.9562 | 0.9666 | 0.9614 | 0.9626 | | 0.0721 | 26.1194 | 1750 | 0.2002 | 0.9557 | 0.9705 | 0.9630 | 0.9656 | | 0.04 | 29.8507 | 2000 | 0.2086 | 0.9579 | 0.9720 | 0.9649 | 0.9643 | | 0.04 | 33.5821 | 2250 | 0.2032 | 0.9587 | 0.9736 | 0.9661 | 0.9660 | | 0.0313 | 37.3134 | 2500 | 0.2067 | 0.9587 | 0.9736 | 0.9661 | 0.9656 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1