--- base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9511823035850496 - name: Recall type: recall value: 0.968167701863354 - name: F1 type: f1 value: 0.9595998460946518 - name: Accuracy type: accuracy value: 0.9596774193548387 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.2305 - Precision: 0.9512 - Recall: 0.9682 - F1: 0.9596 - Accuracy: 0.9597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 3.125 | 250 | 0.6703 | 0.8163 | 0.8626 | 0.8388 | 0.8502 | | 1.0387 | 6.25 | 500 | 0.3617 | 0.8935 | 0.9317 | 0.9122 | 0.9253 | | 1.0387 | 9.375 | 750 | 0.2860 | 0.9320 | 0.9581 | 0.9449 | 0.9423 | | 0.2107 | 12.5 | 1000 | 0.2416 | 0.9429 | 0.9620 | 0.9523 | 0.9525 | | 0.2107 | 15.625 | 1250 | 0.2120 | 0.9550 | 0.9713 | 0.9630 | 0.9631 | | 0.0887 | 18.75 | 1500 | 0.2211 | 0.9474 | 0.9658 | 0.9566 | 0.9588 | | 0.0887 | 21.875 | 1750 | 0.2304 | 0.9474 | 0.9658 | 0.9566 | 0.9576 | | 0.0515 | 25.0 | 2000 | 0.2344 | 0.9526 | 0.9682 | 0.9603 | 0.9584 | | 0.0515 | 28.125 | 2250 | 0.2300 | 0.9490 | 0.9674 | 0.9581 | 0.9601 | | 0.0366 | 31.25 | 2500 | 0.2305 | 0.9512 | 0.9682 | 0.9596 | 0.9597 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1