--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9672131147540983 - name: Recall type: recall value: 0.9776304888152444 - name: F1 type: f1 value: 0.9723939019365472 - name: Accuracy type: accuracy value: 0.9766697163769442 --- # layoutlmv3-finetuned-cord This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.1292 - Precision: 0.9672 - Recall: 0.9776 - F1: 0.9724 - Accuracy: 0.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 3.125 | 250 | 0.6018 | 0.8218 | 0.8633 | 0.8420 | 0.8577 | | 1.0098 | 6.25 | 500 | 0.2695 | 0.9205 | 0.9495 | 0.9347 | 0.9451 | | 1.0098 | 9.375 | 750 | 0.1813 | 0.9528 | 0.9693 | 0.9610 | 0.9639 | | 0.1993 | 12.5 | 1000 | 0.1557 | 0.9616 | 0.9743 | 0.9679 | 0.9739 | | 0.1993 | 15.625 | 1250 | 0.1749 | 0.9608 | 0.9743 | 0.9675 | 0.9703 | | 0.0787 | 18.75 | 1500 | 0.1482 | 0.9616 | 0.9743 | 0.9679 | 0.9730 | | 0.0787 | 21.875 | 1750 | 0.1288 | 0.9640 | 0.9751 | 0.9695 | 0.9762 | | 0.0433 | 25.0 | 2000 | 0.1292 | 0.9672 | 0.9776 | 0.9724 | 0.9767 | | 0.0433 | 28.125 | 2250 | 0.1372 | 0.9623 | 0.9735 | 0.9679 | 0.9735 | | 0.031 | 31.25 | 2500 | 0.1408 | 0.9631 | 0.9743 | 0.9687 | 0.9730 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1