--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd2 results: [] --- # layoutlmv3-finetuned-funsd2 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Precision: 0.7279 - Recall: 0.7091 - F1: 0.7183 - Accuracy: 0.9111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9091 | 10 | 0.5192 | 0.5148 | 0.4871 | 0.5006 | 0.8322 | | No log | 1.8182 | 20 | 0.3608 | 0.6485 | 0.6164 | 0.6320 | 0.8912 | | No log | 2.7273 | 30 | 0.2978 | 0.6762 | 0.6616 | 0.6688 | 0.9027 | | No log | 3.6364 | 40 | 0.2697 | 0.6768 | 0.6724 | 0.6746 | 0.8996 | | No log | 4.5455 | 50 | 0.2737 | 0.6726 | 0.6509 | 0.6616 | 0.8989 | | No log | 5.4545 | 60 | 0.2784 | 0.6667 | 0.6724 | 0.6695 | 0.8973 | | No log | 6.3636 | 70 | 0.2536 | 0.7054 | 0.6810 | 0.6930 | 0.9096 | | No log | 7.2727 | 80 | 0.2803 | 0.7100 | 0.7069 | 0.7084 | 0.9103 | | No log | 8.1818 | 90 | 0.2924 | 0.7165 | 0.7026 | 0.7095 | 0.9057 | | No log | 9.0909 | 100 | 0.2993 | 0.6801 | 0.6918 | 0.6859 | 0.9004 | | No log | 10.0 | 110 | 0.3056 | 0.7013 | 0.6983 | 0.6998 | 0.9057 | | No log | 10.9091 | 120 | 0.2991 | 0.7279 | 0.7091 | 0.7183 | 0.9111 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1