--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - not-lain/sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-sroie results: - task: name: Token Classification type: token-classification dataset: name: not-lain/sroie type: not-lain/sroie metrics: - name: Precision type: precision value: 0.9515865227347072 - name: Recall type: recall value: 0.9645225464190982 - name: F1 type: f1 value: 0.9580108677753993 - name: Accuracy type: accuracy value: 0.9870755974971792 --- # layoutlmv3-finetuned-sroie This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the not-lain/sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0596 - Precision: 0.9516 - Recall: 0.9645 - F1: 0.9580 - Accuracy: 0.9871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.5873 | 100 | 0.0548 | 0.9415 | 0.9453 | 0.9434 | 0.9830 | | No log | 3.1746 | 200 | 0.0531 | 0.9377 | 0.9625 | 0.9499 | 0.9847 | | No log | 4.7619 | 300 | 0.0550 | 0.9414 | 0.9595 | 0.9504 | 0.9851 | | No log | 6.3492 | 400 | 0.0560 | 0.9500 | 0.9645 | 0.9572 | 0.9868 | | 0.0464 | 7.9365 | 500 | 0.0596 | 0.9516 | 0.9645 | 0.9580 | 0.9871 | | 0.0464 | 9.5238 | 600 | 0.0630 | 0.9502 | 0.9622 | 0.9562 | 0.9865 | | 0.0464 | 11.1111 | 700 | 0.0707 | 0.9489 | 0.9658 | 0.9573 | 0.9868 | | 0.0464 | 12.6984 | 800 | 0.0726 | 0.9515 | 0.9629 | 0.9572 | 0.9868 | | 0.0464 | 14.2857 | 900 | 0.0765 | 0.9510 | 0.9652 | 0.9580 | 0.9871 | | 0.0048 | 15.8730 | 1000 | 0.0773 | 0.9500 | 0.9645 | 0.9572 | 0.9868 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1