--- base_model: layoutlmv3 tags: - generated_from_trainer datasets: - not-lain/sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-sroie results: - task: name: Token Classification type: token-classification dataset: name: not-lain/sroie type: not-lain/sroie metrics: - name: Precision type: precision value: 0.9435600578871202 - name: Recall type: recall value: 0.9421965317919075 - name: F1 type: f1 value: 0.9428778018799712 - name: Accuracy type: accuracy value: 0.9952312354080771 --- # layoutlmv3-finetuned-sroie This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the not-lain/sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 - Precision: 0.9436 - Recall: 0.9422 - F1: 0.9429 - Accuracy: 0.9952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.5873 | 100 | 0.0429 | 0.8634 | 0.8772 | 0.8703 | 0.9896 | | No log | 3.1746 | 200 | 0.0222 | 0.9079 | 0.9408 | 0.9241 | 0.9947 | | No log | 4.7619 | 300 | 0.0285 | 0.9232 | 0.9379 | 0.9305 | 0.9939 | | No log | 6.3492 | 400 | 0.0291 | 0.9393 | 0.9393 | 0.9393 | 0.9947 | | 0.0408 | 7.9365 | 500 | 0.0295 | 0.9223 | 0.9436 | 0.9329 | 0.9945 | | 0.0408 | 9.5238 | 600 | 0.0356 | 0.9223 | 0.9436 | 0.9329 | 0.9936 | | 0.0408 | 11.1111 | 700 | 0.0318 | 0.9397 | 0.9451 | 0.9424 | 0.9952 | | 0.0408 | 12.6984 | 800 | 0.0311 | 0.9312 | 0.9393 | 0.9353 | 0.9948 | | 0.0408 | 14.2857 | 900 | 0.0324 | 0.9394 | 0.9408 | 0.9401 | 0.9950 | | 0.0035 | 15.8730 | 1000 | 0.0319 | 0.9436 | 0.9422 | 0.9429 | 0.9952 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1