Create a pipeline file - I think this is required for the image pipeline widget to work
Browse files- pipeline.py +33 -0
pipeline.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from fastai.learner import load_learner
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
class PreTrainedPipeline:
|
9 |
+
def __init__(self, path=""):
|
10 |
+
# IMPLEMENT_THIS
|
11 |
+
# Preload all the elements you are going to need at inference.
|
12 |
+
# For instance your model, processors, tokenizer that might be needed.
|
13 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
14 |
+
self.model = load_learner(os.path.join(path, "model.pkl"))
|
15 |
+
with open(os.path.join(path, "config.json")) as config:
|
16 |
+
config = json.load(config)
|
17 |
+
self.labels = config["labels"]
|
18 |
+
|
19 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
20 |
+
"""
|
21 |
+
Args:
|
22 |
+
inputs (:obj:`PIL.Image`):
|
23 |
+
The raw image representation as PIL.
|
24 |
+
No transformation made whatsoever from the input. Make all necessary transformations here.
|
25 |
+
Return:
|
26 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
27 |
+
It is preferred if the returned list is in decreasing `score` order
|
28 |
+
"""
|
29 |
+
# IMPLEMENT_THIS
|
30 |
+
# FastAI expects a np array, not a PIL Image.
|
31 |
+
_, _, preds = self.model.predict(np.array(inputs))
|
32 |
+
preds = preds.tolist()
|
33 |
+
return [{"label": label, "score": preds[idx]} for idx, label in enumerate(self.labels)]
|