from typing import Dict, List, Any from fastai.learner import load_learner from PIL import Image import os import json import numpy as np class PreTrainedPipeline: def __init__(self, path=""): # IMPLEMENT_THIS # Preload all the elements you are going to need at inference. # For instance your model, processors, tokenizer that might be needed. # This function is only called once, so do all the heavy processing I/O here""" self.model = load_learner(os.path.join(path, "model.pkl")) with open(os.path.join(path, "config.json")) as config: config = json.load(config) self.labels = config["labels"] def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]: """ Args: inputs (:obj:`PIL.Image`): The raw image representation as PIL. No transformation made whatsoever from the input. Make all necessary transformations here. Return: A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} It is preferred if the returned list is in decreasing `score` order """ # IMPLEMENT_THIS # FastAI expects a np array, not a PIL Image. _, _, preds = self.model.predict(np.array(inputs)) preds = preds.tolist() return [{"label": label, "score": preds[idx]} for idx, label in enumerate(self.labels)]