--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small ar - younes matrab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: None args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 61.65413533834586 --- # Whisper Small ar - younes matrab This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8027 - Wer: 61.6541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.7188 | 0.4167 | 10 | 2.7773 | 67.1053 | | 1.6979 | 0.8333 | 20 | 2.4033 | 66.5414 | | 1.3932 | 1.25 | 30 | 1.9422 | 66.3534 | | 1.0467 | 1.6667 | 40 | 1.6225 | 65.2256 | | 0.8824 | 2.0833 | 50 | 1.3586 | 64.4737 | | 0.5935 | 2.5 | 60 | 1.0915 | 62.4060 | | 0.4491 | 2.9167 | 70 | 0.8986 | 63.3459 | | 0.3438 | 3.3333 | 80 | 0.8473 | 61.6541 | | 0.2915 | 3.75 | 90 | 0.8132 | 60.1504 | | 0.2391 | 4.1667 | 100 | 0.8027 | 61.6541 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1