mradermacher commited on
Commit
1b4f2ab
1 Parent(s): 98ee002

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md CHANGED
@@ -1,6 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/ssgplabon/CodeParrotFT-MyDataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ssgplabon/CodeParrotFT-MyDataset
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ model_name: CodeParrotFT-MyDataset
7
+ quantized_by: mradermacher
8
+ tags:
9
+ - generated_from_trainer
10
+ - codeparrot
11
+ - module_1
12
+ - trl
13
+ - sft
14
+ ---
15
+ ## About
16
+
17
  <!-- ### quantize_version: 2 -->
18
  <!-- ### output_tensor_quantised: 1 -->
19
  <!-- ### convert_type: hf -->
20
  <!-- ### vocab_type: -->
21
  <!-- ### tags: -->
22
  static quants of https://huggingface.co/ssgplabon/CodeParrotFT-MyDataset
23
+
24
+ <!-- provided-files -->
25
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
26
+ ## Usage
27
+
28
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
29
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
30
+ more details, including on how to concatenate multi-part files.
31
+
32
+ ## Provided Quants
33
+
34
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
35
+
36
+ | Link | Type | Size/GB | Notes |
37
+ |:-----|:-----|--------:|:------|
38
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q2_K.gguf) | Q2_K | 0.2 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q3_K_S.gguf) | Q3_K_S | 0.2 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.IQ4_XS.gguf) | IQ4_XS | 0.2 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality |
42
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q3_K_L.gguf) | Q3_K_L | 0.2 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended |
44
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended |
45
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q5_K_S.gguf) | Q5_K_S | 0.2 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q5_K_M.gguf) | Q5_K_M | 0.2 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q6_K.gguf) | Q6_K | 0.2 | very good quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality |
49
+ | [GGUF](https://huggingface.co/mradermacher/CodeParrotFT-MyDataset-GGUF/resolve/main/CodeParrotFT-MyDataset.f16.gguf) | f16 | 0.4 | 16 bpw, overkill |
50
+
51
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
52
+ types (lower is better):
53
+
54
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
55
+
56
+ And here are Artefact2's thoughts on the matter:
57
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
58
+
59
+ ## FAQ / Model Request
60
+
61
+ See https://huggingface.co/mradermacher/model_requests for some answers to
62
+ questions you might have and/or if you want some other model quantized.
63
+
64
+ ## Thanks
65
+
66
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
67
+ me use its servers and providing upgrades to my workstation to enable
68
+ this work in my free time.
69
+
70
+ <!-- end -->