File size: 4,778 Bytes
12f5110
b259db5
12f5110
 
 
 
 
 
 
7935735
12f5110
 
 
 
 
 
84f83b2
 
 
 
 
12f5110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b167d0d
7935735
b167d0d
 
 
 
12f5110
 
b167d0d
 
 
 
12f5110
b167d0d
 
 
12f5110
b167d0d
 
 
 
12f5110
 
 
 
 
 
 
 
 
b259db5
 
 
 
 
12f5110
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: wenbopan/Faro-Yi-34B-DPO
datasets:
- wenbopan/Chinese-dpo-pairs
- Intel/orca_dpo_pairs
- argilla/ultrafeedback-binarized-preferences-cleaned
- jondurbin/truthy-dpo-v0.1
language:
- en
- zh
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type:  -->
<!-- ### vocab_type:  -->
weighted/imatrix quants of https://huggingface.co/wenbopan/Faro-Yi-34B-DPO

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ1_S.gguf) | i1-IQ1_S | 7.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ1_M.gguf) | i1-IQ1_M | 8.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ3_XS.gguf) | i1-IQ3_XS | 14.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ3_S.gguf) | i1-IQ3_S | 15.1 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.6 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q4_0.gguf) | i1-Q4_0 | 19.6 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q5_K_M.gguf) | i1-Q5_K_M | 24.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Faro-Yi-34B-DPO-i1-GGUF/resolve/main/Faro-Yi-34B-DPO.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->