--- base_model: moreh/Llama-3-Motif-102B language: - ko - en library_name: transformers no_imatrix: '/ggml-quants.c:4453: GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0) failed' quantized_by: mradermacher --- ## About static quants of https://huggingface.co/moreh/Llama-3-Motif-102B ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q2_K.gguf) | Q2_K | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_S.gguf) | Q3_K_S | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_M.gguf) | Q3_K_M | 49.4 | lower quality | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_L.gguf.part2of2) | Q3_K_L | 53.8 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.IQ4_XS.gguf.part2of2) | IQ4_XS | 55.3 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_S.gguf.part2of2) | Q4_K_S | 58.2 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_M.gguf.part2of2) | Q4_K_M | 61.4 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_S.gguf.part2of2) | Q5_K_S | 70.4 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_M.gguf.part2of2) | Q5_K_M | 72.3 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q6_K.gguf.part2of2) | Q6_K | 83.8 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q8_0.gguf.part3of3) | Q8_0 | 108.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.