File size: 4,006 Bytes
589fead e063159 0255c6b 589fead 0255c6b 589fead bdcfd4a 589fead bdcfd4a 937557f bdcfd4a 589fead fd460c0 589fead 937557f ed7a337 ae1cc0d ed7a337 08e9560 ae1cc0d 589fead 1fa250b fd460c0 1fa250b fd460c0 ac558b2 e063159 0b012ba 589fead |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
base_model: cognitivecomputations/MegaDolphin-120b
datasets:
- ehartford/dolphin
- jondurbin/airoboros-2.2.1
- ehartford/samantha-data
- ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
---
## About
weighted/imatrix quants of https://huggingface.co/cognitivecomputations/MegaDolphin-120b
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-IQ1_S.gguf) | i1-IQ1_S | 25.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 32.2 | |
| [GGUF](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 35.8 | |
| [GGUF](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q2_K.gguf) | i1-Q2_K | 44.6 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 47.3 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_XS.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_XS.gguf.split-ab) | i1-Q3_K_XS | 49.3 | |
| [PART 1](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_S.gguf.split-ab) | i1-Q3_K_S | 52.2 | IQ3_XS probably better |
| [PART 1](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_M.gguf.split-ab) | i1-Q3_K_M | 58.2 | IQ3_S probably better |
| [PART 1](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_L.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q3_K_L.gguf.split-ab) | i1-Q3_K_L | 63.4 | IQ3_M probably better |
| [PART 1](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q4_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q4_K_S.gguf.split-ab) | i1-Q4_K_S | 68.7 | optimal size/speed/quality |
| [PART 1](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q4_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/MegaDolphin-120b-i1-GGUF/resolve/main/MegaDolphin-120b.i1-Q4_K_M.gguf.split-ab) | i1-Q4_K_M | 72.6 | fast, recommended |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|