mradermacher commited on
Commit
47ac08b
·
verified ·
1 Parent(s): 8d74bd3

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -1,6 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2-instruct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: timpal0l/Mistral-7B-v0.1-flashback-v2-instruct
3
+ datasets:
4
+ - timpal0l/OpenHermes-2.5-sv
5
+ - teknium/OpenHermes-2.5
6
+ language:
7
+ - sv
8
+ - en
9
+ library_name: transformers
10
+ license: mit
11
+ quantized_by: mradermacher
12
+ tags:
13
+ - pretrained
14
+ - flashback
15
+ - web
16
+ - conversational
17
+ - chat
18
+ ---
19
+ ## About
20
+
21
  <!-- ### quantize_version: 2 -->
22
  <!-- ### output_tensor_quantised: 1 -->
23
  <!-- ### convert_type: hf -->
24
  <!-- ### vocab_type: -->
25
  <!-- ### tags: -->
26
  static quants of https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2-instruct
27
+
28
+ <!-- provided-files -->
29
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
30
+ ## Usage
31
+
32
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
33
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
34
+ more details, including on how to concatenate multi-part files.
35
+
36
+ ## Provided Quants
37
+
38
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
39
+
40
+ | Link | Type | Size/GB | Notes |
41
+ |:-----|:-----|--------:|:------|
42
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q2_K.gguf) | Q2_K | 2.8 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
45
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
49
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
50
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
53
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
54
+ | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.1-flashback-v2-instruct-GGUF/resolve/main/Mistral-7B-v0.1-flashback-v2-instruct.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
55
+
56
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
57
+ types (lower is better):
58
+
59
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
60
+
61
+ And here are Artefact2's thoughts on the matter:
62
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
63
+
64
+ ## FAQ / Model Request
65
+
66
+ See https://huggingface.co/mradermacher/model_requests for some answers to
67
+ questions you might have and/or if you want some other model quantized.
68
+
69
+ ## Thanks
70
+
71
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
72
+ me use its servers and providing upgrades to my workstation to enable
73
+ this work in my free time.
74
+
75
+ <!-- end -->