mradermacher's picture
auto-patch README.md
d3f3382 verified
|
raw
history blame
3.11 kB
---
base_model: MarsupialAI/Yeet_51b_200k
language:
- en
library_name: transformers
license: other
license_name: yi-other
no_imatrix: 'IQ3_XXS GGML_ASSERT: llama.cpp/ggml-quants.c:11239: grid_index >= 0'
quantized_by: mradermacher
---
## About
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
weighted/imatrix quants of https://huggingface.co/MarsupialAI/Yeet_51b_200k
**No more quants forthcoming, as llama.cpp crashes.**
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Yeet_51b_200k-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q2_K.gguf) | i1-Q2_K | 19.6 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q3_K_S.gguf) | i1-Q3_K_S | 22.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q3_K_M.gguf) | i1-Q3_K_M | 25.3 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q3_K_L.gguf) | i1-Q3_K_L | 27.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q4_0.gguf) | i1-Q4_0 | 29.6 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q4_K_S.gguf) | i1-Q4_K_S | 29.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q4_K_M.gguf) | i1-Q4_K_M | 31.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q5_K_S.gguf) | i1-Q5_K_S | 35.9 | |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q5_K_M.gguf) | i1-Q5_K_M | 36.8 | |
| [GGUF](https://huggingface.co/mradermacher/Yeet_51b_200k-i1-GGUF/resolve/main/Yeet_51b_200k.i1-Q6_K.gguf) | i1-Q6_K | 42.6 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->