File size: 3,015 Bytes
f8e2c67 4e7d66c f8e2c67 a42e74b f8e2c67 a42e74b ca7c1fa bd49cad ca7c1fa 1319c27 bd49cad a42e74b ca7c1fa f8e2c67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
---
## About
weighted/imatrix quants of https://huggingface.co/tiiuae/falcon-40b-instruct
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/falcon-40b-instruct-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 15.1 | |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q2_K.gguf) | i1-Q2_K | 16.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 17.0 | fast, lower quality |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 18.9 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 20.7 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 22.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 24.4 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 26.1 | fast, medium quality |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 29.6 | |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 31.2 | |
| [GGUF](https://huggingface.co/mradermacher/falcon-40b-instruct-i1-GGUF/resolve/main/falcon-40b-instruct.i1-Q6_K.gguf) | i1-Q6_K | 35.1 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|