File size: 5,500 Bytes
d7218ff
f895caf
d7218ff
 
5872de9
 
 
 
d7218ff
b87b595
d7218ff
 
 
 
 
 
 
 
 
41dbfad
 
d7218ff
 
 
 
 
 
 
 
 
 
 
 
41dbfad
c35a84b
c0547cb
 
a72e6c4
d7de725
9e92ba5
c520f41
d7de725
9e92ba5
c520f41
d7de725
1005f38
9e92ba5
c35a84b
 
952e615
c520f41
9e92ba5
952e615
aa53654
d7218ff
 
 
 
 
 
3b9f4be
 
 
f895caf
 
 
 
 
aa53654
 
 
 
 
 
d7218ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: wolfram/miqu-1-103b
language:
- en
- de
- fr
- es
- it
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About

weighted/imatrix quants of https://huggingface.co/wolfram/miqu-1-103b

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/miqu-1-103b-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ1_S.gguf) | i1-IQ1_S | 22.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ1_M.gguf) | i1-IQ1_M | 23.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 27.7 |  |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 30.8 |  |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_S.gguf) | i1-IQ2_S | 32.3 |  |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ2_M.gguf) | i1-IQ2_M | 35.1 |  |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q2_K.gguf) | i1-Q2_K | 38.3 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 40.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 42.5 |  |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 44.9 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_S.gguf) | i1-IQ3_S | 45.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ3_M.gguf) | i1-IQ3_M | 46.5 |  |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 50.0 | IQ3_S probably better |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q3_K_L.gguf.part2of2) | i1-Q3_K_L | 54.5 | IQ3_M probably better |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-IQ4_XS.gguf.part2of2) | i1-IQ4_XS | 55.2 |  |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_0.gguf.part2of2) | i1-Q4_0 | 58.4 | fast, low quality |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_K_S.gguf.part2of2) | i1-Q4_K_S | 59.0 | optimal size/speed/quality |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 62.3 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 71.4 |  |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 73.3 |  |
| [PART 1](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-1-103b-i1-GGUF/resolve/main/miqu-1-103b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 85.1 | practically like static Q6_K |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->