File size: 5,084 Bytes
f697015 5c23f16 70894d7 f697015 70894d7 f697015 14c7900 5bb30ef 8c7d6e7 ebce411 3d1d593 432e469 0a984fc 3d1d593 ebce411 9d8f51c ebce411 e10acf8 0a984fc e10acf8 0a984fc e10acf8 0a984fc 6053c68 e10acf8 ebce411 62ae96a 9d8f51c 62ae96a 9d8f51c 21532e6 5c23f16 351aad2 c439231 351aad2 ebce411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: alpindale/miquella-120b
language:
- en
library_name: transformers
pipeline_tag: text-generation
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
static quants of https://huggingface.co/alpindale/miquella-120b commit 25de83c
you can find weighted quants at https://huggingface.co/alpindale/miquella-120b-gguf
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/miquella-120b-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q2_K.gguf) | Q2_K | 43.3 | |
| [GGUF](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_XS.gguf) | Q3_K_XS | 48.0 | |
| [GGUF](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ3_XS.gguf) | IQ3_XS | 48.2 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_S.gguf.split-ab) | Q3_K_S | 50.8 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ3_S.gguf.part2of2) | IQ3_S | 51.0 | beats Q3_K* |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ3_M.gguf.part2of2) | IQ3_M | 52.7 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_M.gguf.split-ab) | Q3_K_M | 56.7 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_L.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q3_K_L.gguf.split-ab) | Q3_K_L | 61.8 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.IQ4_XS.gguf.part2of2) | IQ4_XS | 63.5 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q4_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q4_K_S.gguf.split-ab) | Q4_K_S | 66.9 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q4_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q4_K_M.gguf.split-ab) | Q4_K_M | 70.7 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q5_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q5_K_S.gguf.split-ab) | Q5_K_S | 81.1 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q5_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q5_K_M.gguf.split-ab) | Q5_K_M | 83.3 | |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q6_K.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q6_K.gguf.split-ab) | Q6_K | 96.7 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q8_0.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q8_0.gguf.split-ab) [PART 3](https://huggingface.co/mradermacher/miquella-120b-GGUF/resolve/main/miquella-120b.Q8_0.gguf.split-ac) | Q8_0 | 125.2 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|