End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1729599442.reiza-AERO-15-YD.2134860.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7094
|
21 |
+
- Answer: {'precision': 0.7131868131868132, 'recall': 0.8022249690976514, 'f1': 0.755090168702734, 'number': 809}
|
22 |
+
- Header: {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7785651018600531, 'recall': 0.8253521126760563, 'f1': 0.8012762078395624, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7271
|
25 |
+
- Overall Recall: 0.7873
|
26 |
+
- Overall F1: 0.7560
|
27 |
+
- Overall Accuracy: 0.8026
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7767 | 1.0 | 10 | 1.5683 | {'precision': 0.021764032073310423, 'recall': 0.023485784919653894, 'f1': 0.022592152199762183, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.214987714987715, 'recall': 0.1643192488262911, 'f1': 0.18626929217668972, 'number': 1065} | 0.1150 | 0.0973 | 0.1054 | 0.3768 |
|
60 |
+
| 1.4234 | 2.0 | 20 | 1.2196 | {'precision': 0.1918194640338505, 'recall': 0.1681087762669963, 'f1': 0.17918313570487485, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4225037257824143, 'recall': 0.532394366197183, 'f1': 0.47112588284171164, 'number': 1065} | 0.3409 | 0.3527 | 0.3467 | 0.5773 |
|
61 |
+
| 1.0839 | 3.0 | 30 | 0.9585 | {'precision': 0.4686390532544379, 'recall': 0.4894932014833127, 'f1': 0.4788391777509069, 'number': 809} | {'precision': 0.13043478260869565, 'recall': 0.05042016806722689, 'f1': 0.07272727272727272, 'number': 119} | {'precision': 0.5354637568199533, 'recall': 0.6450704225352113, 'f1': 0.5851788756388415, 'number': 1065} | 0.5009 | 0.5464 | 0.5227 | 0.7008 |
|
62 |
+
| 0.8429 | 4.0 | 40 | 0.8025 | {'precision': 0.6150583244962884, 'recall': 0.7169344870210136, 'f1': 0.6621004566210046, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.15126050420168066, 'f1': 0.20571428571428574, 'number': 119} | {'precision': 0.6584536958368734, 'recall': 0.7276995305164319, 'f1': 0.6913470115967887, 'number': 1065} | 0.6310 | 0.6889 | 0.6587 | 0.7534 |
|
63 |
+
| 0.6591 | 5.0 | 50 | 0.7255 | {'precision': 0.6464208242950108, 'recall': 0.7367119901112484, 'f1': 0.6886192952050838, 'number': 809} | {'precision': 0.25, 'recall': 0.19327731092436976, 'f1': 0.2180094786729858, 'number': 119} | {'precision': 0.6565891472868217, 'recall': 0.7953051643192488, 'f1': 0.7193205944798302, 'number': 1065} | 0.6363 | 0.7356 | 0.6823 | 0.7769 |
|
64 |
+
| 0.5607 | 6.0 | 60 | 0.7110 | {'precision': 0.6417759838546923, 'recall': 0.7861557478368356, 'f1': 0.7066666666666668, 'number': 809} | {'precision': 0.30337078651685395, 'recall': 0.226890756302521, 'f1': 0.2596153846153846, 'number': 119} | {'precision': 0.7202432667245873, 'recall': 0.7784037558685446, 'f1': 0.7481949458483754, 'number': 1065} | 0.6688 | 0.7486 | 0.7064 | 0.7806 |
|
65 |
+
| 0.483 | 7.0 | 70 | 0.6787 | {'precision': 0.6635120925341745, 'recall': 0.7799752781211372, 'f1': 0.7170454545454545, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.25210084033613445, 'f1': 0.2643171806167401, 'number': 119} | {'precision': 0.7391688770999116, 'recall': 0.7849765258215963, 'f1': 0.761384335154827, 'number': 1065} | 0.6836 | 0.7511 | 0.7158 | 0.7923 |
|
66 |
+
| 0.4275 | 8.0 | 80 | 0.6793 | {'precision': 0.6615067079463365, 'recall': 0.792336217552534, 'f1': 0.7210348706411699, 'number': 809} | {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} | {'precision': 0.7489139878366637, 'recall': 0.8093896713615023, 'f1': 0.7779783393501806, 'number': 1065} | 0.6893 | 0.7702 | 0.7275 | 0.7970 |
|
67 |
+
| 0.3762 | 9.0 | 90 | 0.6784 | {'precision': 0.6949516648764769, 'recall': 0.799752781211372, 'f1': 0.7436781609195402, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} | {'precision': 0.7506493506493507, 'recall': 0.8140845070422535, 'f1': 0.781081081081081, 'number': 1065} | 0.7049 | 0.7792 | 0.7402 | 0.8000 |
|
68 |
+
| 0.3634 | 10.0 | 100 | 0.6793 | {'precision': 0.6964477933261571, 'recall': 0.799752781211372, 'f1': 0.7445339470655927, 'number': 809} | {'precision': 0.375, 'recall': 0.3277310924369748, 'f1': 0.3497757847533633, 'number': 119} | {'precision': 0.7650655021834061, 'recall': 0.8225352112676056, 'f1': 0.7927601809954752, 'number': 1065} | 0.7172 | 0.7837 | 0.7490 | 0.8033 |
|
69 |
+
| 0.3104 | 11.0 | 110 | 0.6977 | {'precision': 0.694327731092437, 'recall': 0.8170580964153276, 'f1': 0.750709823963657, 'number': 809} | {'precision': 0.33613445378151263, 'recall': 0.33613445378151263, 'f1': 0.33613445378151263, 'number': 119} | {'precision': 0.7766903914590747, 'recall': 0.819718309859155, 'f1': 0.7976244860666972, 'number': 1065} | 0.7171 | 0.7898 | 0.7517 | 0.8032 |
|
70 |
+
| 0.2928 | 12.0 | 120 | 0.6987 | {'precision': 0.6931330472103004, 'recall': 0.7985166872682324, 'f1': 0.7421022400919012, 'number': 809} | {'precision': 0.4, 'recall': 0.35294117647058826, 'f1': 0.37500000000000006, 'number': 119} | {'precision': 0.7809439002671416, 'recall': 0.8234741784037559, 'f1': 0.8016453382084096, 'number': 1065} | 0.7245 | 0.7852 | 0.7537 | 0.8028 |
|
71 |
+
| 0.2766 | 13.0 | 130 | 0.7057 | {'precision': 0.6996770721205597, 'recall': 0.8034610630407911, 'f1': 0.7479861910241656, 'number': 809} | {'precision': 0.3277310924369748, 'recall': 0.3277310924369748, 'f1': 0.3277310924369748, 'number': 119} | {'precision': 0.7749338040600177, 'recall': 0.8244131455399061, 'f1': 0.7989080982711555, 'number': 1065} | 0.7185 | 0.7863 | 0.7508 | 0.8031 |
|
72 |
+
| 0.2627 | 14.0 | 140 | 0.7089 | {'precision': 0.7063318777292577, 'recall': 0.799752781211372, 'f1': 0.750144927536232, 'number': 809} | {'precision': 0.3652173913043478, 'recall': 0.35294117647058826, 'f1': 0.35897435897435903, 'number': 119} | {'precision': 0.7798408488063661, 'recall': 0.828169014084507, 'f1': 0.8032786885245902, 'number': 1065} | 0.7266 | 0.7883 | 0.7562 | 0.8012 |
|
73 |
+
| 0.2561 | 15.0 | 150 | 0.7094 | {'precision': 0.7131868131868132, 'recall': 0.8022249690976514, 'f1': 0.755090168702734, 'number': 809} | {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119} | {'precision': 0.7785651018600531, 'recall': 0.8253521126760563, 'f1': 0.8012762078395624, 'number': 1065} | 0.7271 | 0.7873 | 0.7560 | 0.8026 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.44.0
|
79 |
+
- Pytorch 2.2.1+cu121
|
80 |
+
- Datasets 2.21.0
|
81 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1729599442.reiza-AERO-15-YD.2134860.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:965b1526d2b37b82baed761091ba7135f9a0e35054d323898f359dbaa3bc4c41
|
3 |
+
size 16080
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90f5ec532be87d11d5ea78ea464e1e8c2fd0d44e2982c5f5be2b8e4d781d0598
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|