mreizasyaifullah commited on
Commit
2c6e0d5
·
verified ·
1 Parent(s): b0ebb1d

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7094
21
+ - Answer: {'precision': 0.7131868131868132, 'recall': 0.8022249690976514, 'f1': 0.755090168702734, 'number': 809}
22
+ - Header: {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119}
23
+ - Question: {'precision': 0.7785651018600531, 'recall': 0.8253521126760563, 'f1': 0.8012762078395624, 'number': 1065}
24
+ - Overall Precision: 0.7271
25
+ - Overall Recall: 0.7873
26
+ - Overall F1: 0.7560
27
+ - Overall Accuracy: 0.8026
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7767 | 1.0 | 10 | 1.5683 | {'precision': 0.021764032073310423, 'recall': 0.023485784919653894, 'f1': 0.022592152199762183, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.214987714987715, 'recall': 0.1643192488262911, 'f1': 0.18626929217668972, 'number': 1065} | 0.1150 | 0.0973 | 0.1054 | 0.3768 |
60
+ | 1.4234 | 2.0 | 20 | 1.2196 | {'precision': 0.1918194640338505, 'recall': 0.1681087762669963, 'f1': 0.17918313570487485, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4225037257824143, 'recall': 0.532394366197183, 'f1': 0.47112588284171164, 'number': 1065} | 0.3409 | 0.3527 | 0.3467 | 0.5773 |
61
+ | 1.0839 | 3.0 | 30 | 0.9585 | {'precision': 0.4686390532544379, 'recall': 0.4894932014833127, 'f1': 0.4788391777509069, 'number': 809} | {'precision': 0.13043478260869565, 'recall': 0.05042016806722689, 'f1': 0.07272727272727272, 'number': 119} | {'precision': 0.5354637568199533, 'recall': 0.6450704225352113, 'f1': 0.5851788756388415, 'number': 1065} | 0.5009 | 0.5464 | 0.5227 | 0.7008 |
62
+ | 0.8429 | 4.0 | 40 | 0.8025 | {'precision': 0.6150583244962884, 'recall': 0.7169344870210136, 'f1': 0.6621004566210046, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.15126050420168066, 'f1': 0.20571428571428574, 'number': 119} | {'precision': 0.6584536958368734, 'recall': 0.7276995305164319, 'f1': 0.6913470115967887, 'number': 1065} | 0.6310 | 0.6889 | 0.6587 | 0.7534 |
63
+ | 0.6591 | 5.0 | 50 | 0.7255 | {'precision': 0.6464208242950108, 'recall': 0.7367119901112484, 'f1': 0.6886192952050838, 'number': 809} | {'precision': 0.25, 'recall': 0.19327731092436976, 'f1': 0.2180094786729858, 'number': 119} | {'precision': 0.6565891472868217, 'recall': 0.7953051643192488, 'f1': 0.7193205944798302, 'number': 1065} | 0.6363 | 0.7356 | 0.6823 | 0.7769 |
64
+ | 0.5607 | 6.0 | 60 | 0.7110 | {'precision': 0.6417759838546923, 'recall': 0.7861557478368356, 'f1': 0.7066666666666668, 'number': 809} | {'precision': 0.30337078651685395, 'recall': 0.226890756302521, 'f1': 0.2596153846153846, 'number': 119} | {'precision': 0.7202432667245873, 'recall': 0.7784037558685446, 'f1': 0.7481949458483754, 'number': 1065} | 0.6688 | 0.7486 | 0.7064 | 0.7806 |
65
+ | 0.483 | 7.0 | 70 | 0.6787 | {'precision': 0.6635120925341745, 'recall': 0.7799752781211372, 'f1': 0.7170454545454545, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.25210084033613445, 'f1': 0.2643171806167401, 'number': 119} | {'precision': 0.7391688770999116, 'recall': 0.7849765258215963, 'f1': 0.761384335154827, 'number': 1065} | 0.6836 | 0.7511 | 0.7158 | 0.7923 |
66
+ | 0.4275 | 8.0 | 80 | 0.6793 | {'precision': 0.6615067079463365, 'recall': 0.792336217552534, 'f1': 0.7210348706411699, 'number': 809} | {'precision': 0.29906542056074764, 'recall': 0.2689075630252101, 'f1': 0.28318584070796454, 'number': 119} | {'precision': 0.7489139878366637, 'recall': 0.8093896713615023, 'f1': 0.7779783393501806, 'number': 1065} | 0.6893 | 0.7702 | 0.7275 | 0.7970 |
67
+ | 0.3762 | 9.0 | 90 | 0.6784 | {'precision': 0.6949516648764769, 'recall': 0.799752781211372, 'f1': 0.7436781609195402, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} | {'precision': 0.7506493506493507, 'recall': 0.8140845070422535, 'f1': 0.781081081081081, 'number': 1065} | 0.7049 | 0.7792 | 0.7402 | 0.8000 |
68
+ | 0.3634 | 10.0 | 100 | 0.6793 | {'precision': 0.6964477933261571, 'recall': 0.799752781211372, 'f1': 0.7445339470655927, 'number': 809} | {'precision': 0.375, 'recall': 0.3277310924369748, 'f1': 0.3497757847533633, 'number': 119} | {'precision': 0.7650655021834061, 'recall': 0.8225352112676056, 'f1': 0.7927601809954752, 'number': 1065} | 0.7172 | 0.7837 | 0.7490 | 0.8033 |
69
+ | 0.3104 | 11.0 | 110 | 0.6977 | {'precision': 0.694327731092437, 'recall': 0.8170580964153276, 'f1': 0.750709823963657, 'number': 809} | {'precision': 0.33613445378151263, 'recall': 0.33613445378151263, 'f1': 0.33613445378151263, 'number': 119} | {'precision': 0.7766903914590747, 'recall': 0.819718309859155, 'f1': 0.7976244860666972, 'number': 1065} | 0.7171 | 0.7898 | 0.7517 | 0.8032 |
70
+ | 0.2928 | 12.0 | 120 | 0.6987 | {'precision': 0.6931330472103004, 'recall': 0.7985166872682324, 'f1': 0.7421022400919012, 'number': 809} | {'precision': 0.4, 'recall': 0.35294117647058826, 'f1': 0.37500000000000006, 'number': 119} | {'precision': 0.7809439002671416, 'recall': 0.8234741784037559, 'f1': 0.8016453382084096, 'number': 1065} | 0.7245 | 0.7852 | 0.7537 | 0.8028 |
71
+ | 0.2766 | 13.0 | 130 | 0.7057 | {'precision': 0.6996770721205597, 'recall': 0.8034610630407911, 'f1': 0.7479861910241656, 'number': 809} | {'precision': 0.3277310924369748, 'recall': 0.3277310924369748, 'f1': 0.3277310924369748, 'number': 119} | {'precision': 0.7749338040600177, 'recall': 0.8244131455399061, 'f1': 0.7989080982711555, 'number': 1065} | 0.7185 | 0.7863 | 0.7508 | 0.8031 |
72
+ | 0.2627 | 14.0 | 140 | 0.7089 | {'precision': 0.7063318777292577, 'recall': 0.799752781211372, 'f1': 0.750144927536232, 'number': 809} | {'precision': 0.3652173913043478, 'recall': 0.35294117647058826, 'f1': 0.35897435897435903, 'number': 119} | {'precision': 0.7798408488063661, 'recall': 0.828169014084507, 'f1': 0.8032786885245902, 'number': 1065} | 0.7266 | 0.7883 | 0.7562 | 0.8012 |
73
+ | 0.2561 | 15.0 | 150 | 0.7094 | {'precision': 0.7131868131868132, 'recall': 0.8022249690976514, 'f1': 0.755090168702734, 'number': 809} | {'precision': 0.3445378151260504, 'recall': 0.3445378151260504, 'f1': 0.3445378151260504, 'number': 119} | {'precision': 0.7785651018600531, 'recall': 0.8253521126760563, 'f1': 0.8012762078395624, 'number': 1065} | 0.7271 | 0.7873 | 0.7560 | 0.8026 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.44.0
79
+ - Pytorch 2.2.1+cu121
80
+ - Datasets 2.21.0
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1729599442.reiza-AERO-15-YD.2134860.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:99051c3bcaf01fd8d24e55c53bb27434eb124004df448660a8c11d4e9aeb7461
3
- size 12879
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965b1526d2b37b82baed761091ba7135f9a0e35054d323898f359dbaa3bc4c41
3
+ size 16080
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a9f14493021ea099aa940113abb6ec3b3e5740ce29ccac97d1c24a9b69ec7265
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f5ec532be87d11d5ea78ea464e1e8c2fd0d44e2982c5f5be2b8e4d781d0598
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff