File size: 3,276 Bytes
75f7914 2801a7d 75f7914 ae85775 28109f0 278334e 6c900f4 6630f5c b4d7dfd 685658c 2801a7d 75f7914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: mridhulanatarajan/layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# mridhulanatarajan/layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2381
- Validation Loss: 1.2497
- Train Overall Precision: 0.5672
- Train Overall Recall: 0.6352
- Train Overall F1: 0.5993
- Train Overall Accuracy: 0.6689
- Epoch: 11
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.0628 | 1.0944 | 0.3612 | 0.5354 | 0.4314 | 0.5849 | 0 |
| 0.9183 | 1.0225 | 0.4267 | 0.5580 | 0.4836 | 0.6221 | 1 |
| 0.8087 | 1.0060 | 0.4499 | 0.5364 | 0.4894 | 0.6207 | 2 |
| 0.6643 | 1.0055 | 0.4673 | 0.5840 | 0.5192 | 0.6509 | 3 |
| 0.5917 | 1.0958 | 0.4957 | 0.6096 | 0.5468 | 0.6404 | 4 |
| 0.5103 | 1.0582 | 0.5169 | 0.5981 | 0.5545 | 0.6389 | 5 |
| 0.4368 | 1.0593 | 0.5348 | 0.6242 | 0.5761 | 0.6630 | 6 |
| 0.3950 | 1.1941 | 0.5437 | 0.5810 | 0.5617 | 0.6543 | 7 |
| 0.3836 | 1.1152 | 0.5359 | 0.6066 | 0.5691 | 0.6509 | 8 |
| 0.3288 | 1.1746 | 0.5308 | 0.6147 | 0.5696 | 0.6438 | 9 |
| 0.2721 | 1.2269 | 0.5467 | 0.6407 | 0.5900 | 0.6630 | 10 |
| 0.2381 | 1.2497 | 0.5672 | 0.6352 | 0.5993 | 0.6689 | 11 |
### Framework versions
- Transformers 4.37.2
- TensorFlow 2.15.0
- Datasets 2.17.1
- Tokenizers 0.15.2
|