--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_keras_callback model-index: - name: mridhulanatarajan/layoutlm-funsd-tf results: [] --- # mridhulanatarajan/layoutlm-funsd-tf This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2381 - Validation Loss: 1.2497 - Train Overall Precision: 0.5672 - Train Overall Recall: 0.6352 - Train Overall F1: 0.5993 - Train Overall Accuracy: 0.6689 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| | 1.0628 | 1.0944 | 0.3612 | 0.5354 | 0.4314 | 0.5849 | 0 | | 0.9183 | 1.0225 | 0.4267 | 0.5580 | 0.4836 | 0.6221 | 1 | | 0.8087 | 1.0060 | 0.4499 | 0.5364 | 0.4894 | 0.6207 | 2 | | 0.6643 | 1.0055 | 0.4673 | 0.5840 | 0.5192 | 0.6509 | 3 | | 0.5917 | 1.0958 | 0.4957 | 0.6096 | 0.5468 | 0.6404 | 4 | | 0.5103 | 1.0582 | 0.5169 | 0.5981 | 0.5545 | 0.6389 | 5 | | 0.4368 | 1.0593 | 0.5348 | 0.6242 | 0.5761 | 0.6630 | 6 | | 0.3950 | 1.1941 | 0.5437 | 0.5810 | 0.5617 | 0.6543 | 7 | | 0.3836 | 1.1152 | 0.5359 | 0.6066 | 0.5691 | 0.6509 | 8 | | 0.3288 | 1.1746 | 0.5308 | 0.6147 | 0.5696 | 0.6438 | 9 | | 0.2721 | 1.2269 | 0.5467 | 0.6407 | 0.5900 | 0.6630 | 10 | | 0.2381 | 1.2497 | 0.5672 | 0.6352 | 0.5993 | 0.6689 | 11 | ### Framework versions - Transformers 4.37.2 - TensorFlow 2.15.0 - Datasets 2.17.1 - Tokenizers 0.15.2