Update README.md
Browse files
README.md
CHANGED
@@ -51,3 +51,177 @@ You can train fine in colab, but if you get a K80, it's probably best to switch
|
|
51 |
|
52 |
The model was converted using [this notebook](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
The model was converted using [this notebook](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
|
53 |
|
54 |
+
### How to use
|
55 |
+
|
56 |
+
```sh
|
57 |
+
!pip install transformers==4.14.1
|
58 |
+
!pip install bitsandbytes-cuda111==0.26.0
|
59 |
+
!pip install datasets==1.16.1
|
60 |
+
```
|
61 |
+
|
62 |
+
```py
|
63 |
+
import transformers
|
64 |
+
|
65 |
+
import torch
|
66 |
+
import torch.nn.functional as F
|
67 |
+
from torch import nn
|
68 |
+
from torch.cuda.amp import custom_fwd, custom_bwd
|
69 |
+
|
70 |
+
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
|
71 |
+
|
72 |
+
from tqdm.auto import tqdm
|
73 |
+
|
74 |
+
class FrozenBNBLinear(nn.Module):
|
75 |
+
def __init__(self, weight, absmax, code, bias=None):
|
76 |
+
assert isinstance(bias, nn.Parameter) or bias is None
|
77 |
+
super().__init__()
|
78 |
+
self.out_features, self.in_features = weight.shape
|
79 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
80 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
81 |
+
self.register_buffer("code", code.requires_grad_(False))
|
82 |
+
self.adapter = None
|
83 |
+
self.bias = bias
|
84 |
+
|
85 |
+
def forward(self, input):
|
86 |
+
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
|
87 |
+
if self.adapter:
|
88 |
+
output += self.adapter(input)
|
89 |
+
return output
|
90 |
+
|
91 |
+
@classmethod
|
92 |
+
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
|
93 |
+
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
|
94 |
+
return cls(weights_int8, *state, linear.bias)
|
95 |
+
|
96 |
+
def __repr__(self):
|
97 |
+
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
|
98 |
+
|
99 |
+
|
100 |
+
class DequantizeAndLinear(torch.autograd.Function):
|
101 |
+
@staticmethod
|
102 |
+
@custom_fwd
|
103 |
+
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
|
104 |
+
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
|
105 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
106 |
+
ctx.save_for_backward(input, weights_quantized, absmax, code)
|
107 |
+
ctx._has_bias = bias is not None
|
108 |
+
return F.linear(input, weights_deq, bias)
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
@custom_bwd
|
112 |
+
def backward(ctx, grad_output: torch.Tensor):
|
113 |
+
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
|
114 |
+
input, weights_quantized, absmax, code = ctx.saved_tensors
|
115 |
+
# grad_output: [*batch, out_features]
|
116 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
117 |
+
grad_input = grad_output @ weights_deq
|
118 |
+
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
|
119 |
+
return grad_input, None, None, None, grad_bias
|
120 |
+
|
121 |
+
|
122 |
+
class FrozenBNBEmbedding(nn.Module):
|
123 |
+
def __init__(self, weight, absmax, code):
|
124 |
+
super().__init__()
|
125 |
+
self.num_embeddings, self.embedding_dim = weight.shape
|
126 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
127 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
128 |
+
self.register_buffer("code", code.requires_grad_(False))
|
129 |
+
self.adapter = None
|
130 |
+
|
131 |
+
def forward(self, input, **kwargs):
|
132 |
+
with torch.no_grad():
|
133 |
+
# note: both quantuized weights and input indices are *not* differentiable
|
134 |
+
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
|
135 |
+
output = F.embedding(input, weight_deq, **kwargs)
|
136 |
+
if self.adapter:
|
137 |
+
output += self.adapter(input)
|
138 |
+
return output
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
|
142 |
+
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
|
143 |
+
return cls(weights_int8, *state)
|
144 |
+
|
145 |
+
def __repr__(self):
|
146 |
+
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
|
147 |
+
|
148 |
+
|
149 |
+
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
|
150 |
+
assert chunk_size % 4096 == 0
|
151 |
+
code = None
|
152 |
+
chunks = []
|
153 |
+
absmaxes = []
|
154 |
+
flat_tensor = matrix.view(-1)
|
155 |
+
for i in range((matrix.numel() - 1) // chunk_size + 1):
|
156 |
+
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
|
157 |
+
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
|
158 |
+
chunks.append(quantized_chunk)
|
159 |
+
absmaxes.append(absmax_chunk)
|
160 |
+
|
161 |
+
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
|
162 |
+
absmax = torch.cat(absmaxes)
|
163 |
+
return matrix_i8, (absmax, code)
|
164 |
+
|
165 |
+
|
166 |
+
def convert_to_int8(model):
|
167 |
+
"""Convert linear and embedding modules to 8-bit with optional adapters"""
|
168 |
+
for module in list(model.modules()):
|
169 |
+
for name, child in module.named_children():
|
170 |
+
if isinstance(child, nn.Linear):
|
171 |
+
print(name, child)
|
172 |
+
setattr(
|
173 |
+
module,
|
174 |
+
name,
|
175 |
+
FrozenBNBLinear(
|
176 |
+
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
|
177 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
178 |
+
code=torch.zeros(256),
|
179 |
+
bias=child.bias,
|
180 |
+
),
|
181 |
+
)
|
182 |
+
elif isinstance(child, nn.Embedding):
|
183 |
+
setattr(
|
184 |
+
module,
|
185 |
+
name,
|
186 |
+
FrozenBNBEmbedding(
|
187 |
+
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
|
188 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
189 |
+
code=torch.zeros(256),
|
190 |
+
)
|
191 |
+
)
|
192 |
+
|
193 |
+
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
|
194 |
+
def __init__(self, config):
|
195 |
+
super().__init__(config)
|
196 |
+
|
197 |
+
convert_to_int8(self.attn)
|
198 |
+
convert_to_int8(self.mlp)
|
199 |
+
|
200 |
+
|
201 |
+
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
|
202 |
+
def __init__(self, config):
|
203 |
+
super().__init__(config)
|
204 |
+
convert_to_int8(self)
|
205 |
+
|
206 |
+
|
207 |
+
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
|
208 |
+
def __init__(self, config):
|
209 |
+
super().__init__(config)
|
210 |
+
convert_to_int8(self)
|
211 |
+
|
212 |
+
|
213 |
+
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J
|
214 |
+
|
215 |
+
config = transformers.GPTJConfig.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit")
|
216 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit")
|
217 |
+
|
218 |
+
gpt = GPTJForCausalLM.from_pretrained("mrm8488/bertin-gpt-j-6B-ES-8bit", low_cpu_mem_usage=True)
|
219 |
+
|
220 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
221 |
+
gpt.to(device)
|
222 |
+
|
223 |
+
prompt = tokenizer("El sentido de la vida es", return_tensors='pt')
|
224 |
+
prompt = {key: value.to(device) for key, value in prompt.items()}
|
225 |
+
out = gpt.generate(**prompt, max_length=64, do_sample=True)
|
226 |
+
print(tokenizer.decode(out[0]))
|
227 |
+
```
|