mrm8488 commited on
Commit
fb81cb1
1 Parent(s): 2336d9e

Create utils.py

Browse files
Files changed (1) hide show
  1. utils.py +127 -0
utils.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from torch import nn
4
+ from torch.cuda.amp import custom_fwd, custom_bwd
5
+
6
+ from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
7
+
8
+
9
+
10
+ class FrozenBNBLinear(nn.Module):
11
+ def __init__(self, weight, absmax, code, bias=None):
12
+ assert isinstance(bias, nn.Parameter) or bias is None
13
+ super().__init__()
14
+ self.out_features, self.in_features = weight.shape
15
+ self.register_buffer("weight", weight.requires_grad_(False))
16
+ self.register_buffer("absmax", absmax.requires_grad_(False))
17
+ self.register_buffer("code", code.requires_grad_(False))
18
+ self.adapter = None
19
+ self.bias = bias
20
+
21
+ def forward(self, input):
22
+ output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
23
+ if self.adapter:
24
+ output += self.adapter(input)
25
+ return output
26
+
27
+ @classmethod
28
+ def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
29
+ weights_int8, state = quantize_blockise_lowmemory(linear.weight)
30
+ return cls(weights_int8, *state, linear.bias)
31
+
32
+ def __repr__(self):
33
+ return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
34
+
35
+
36
+ class DequantizeAndLinear(torch.autograd.Function):
37
+ @staticmethod
38
+ @custom_fwd
39
+ def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
40
+ absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
41
+ weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
42
+ ctx.save_for_backward(input, weights_quantized, absmax, code)
43
+ ctx._has_bias = bias is not None
44
+ return F.linear(input, weights_deq, bias)
45
+
46
+ @staticmethod
47
+ @custom_bwd
48
+ def backward(ctx, grad_output: torch.Tensor):
49
+ assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
50
+ input, weights_quantized, absmax, code = ctx.saved_tensors
51
+ # grad_output: [*batch, out_features]
52
+ weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
53
+ grad_input = grad_output @ weights_deq
54
+ grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
55
+ return grad_input, None, None, None, grad_bias
56
+
57
+
58
+ class FrozenBNBEmbedding(nn.Module):
59
+ def __init__(self, weight, absmax, code):
60
+ super().__init__()
61
+ self.num_embeddings, self.embedding_dim = weight.shape
62
+ self.register_buffer("weight", weight.requires_grad_(False))
63
+ self.register_buffer("absmax", absmax.requires_grad_(False))
64
+ self.register_buffer("code", code.requires_grad_(False))
65
+ self.adapter = None
66
+
67
+ def forward(self, input, **kwargs):
68
+ with torch.no_grad():
69
+ # note: both quantuized weights and input indices are *not* differentiable
70
+ weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
71
+ output = F.embedding(input, weight_deq, **kwargs)
72
+ if self.adapter:
73
+ output += self.adapter(input)
74
+ return output
75
+
76
+ @classmethod
77
+ def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
78
+ weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
79
+ return cls(weights_int8, *state)
80
+
81
+ def __repr__(self):
82
+ return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
83
+
84
+
85
+ def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
86
+ assert chunk_size % 4096 == 0
87
+ code = None
88
+ chunks = []
89
+ absmaxes = []
90
+ flat_tensor = matrix.view(-1)
91
+ for i in range((matrix.numel() - 1) // chunk_size + 1):
92
+ input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
93
+ quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
94
+ chunks.append(quantized_chunk)
95
+ absmaxes.append(absmax_chunk)
96
+
97
+ matrix_i8 = torch.cat(chunks).reshape_as(matrix)
98
+ absmax = torch.cat(absmaxes)
99
+ return matrix_i8, (absmax, code)
100
+
101
+
102
+ def convert_to_int8(model):
103
+ """Convert linear and embedding modules to 8-bit with optional adapters"""
104
+ for module in list(model.modules()):
105
+ for name, child in module.named_children():
106
+ if isinstance(child, nn.Linear):
107
+ print(name, child)
108
+ setattr(
109
+ module,
110
+ name,
111
+ FrozenBNBLinear(
112
+ weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
113
+ absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
114
+ code=torch.zeros(256),
115
+ bias=child.bias,
116
+ ),
117
+ )
118
+ elif isinstance(child, nn.Embedding):
119
+ setattr(
120
+ module,
121
+ name,
122
+ FrozenBNBEmbedding(
123
+ weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
124
+ absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
125
+ code=torch.zeros(256),
126
+ )
127
+ )