mrm8488's picture
End of training
c1ad50a verified
|
raw
history blame
1.95 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
  - f1
model-index:
  - name: deberta-v3-ft-news-sentiment-analisys
    results: []

deberta-v3-ft-news-sentiment-analisys

This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2868
  • Precision: 0.8987
  • Recall: 0.8987
  • Accuracy: 0.8987
  • F1: 0.8987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
No log 1.0 64 0.8396 0.7093 0.7093 0.7093 0.7093
No log 2.0 128 0.4040 0.8194 0.8194 0.8194 0.8194
No log 3.0 192 0.4036 0.8238 0.8238 0.8238 0.8238
No log 4.0 256 0.3208 0.8767 0.8767 0.8767 0.8767
No log 5.0 320 0.2868 0.8987 0.8987 0.8987 0.8987

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0