File size: 4,428 Bytes
f53f1a8
 
6ecbefa
 
 
 
703da8f
 
0d68f7a
 
 
 
 
 
 
 
 
 
 
 
703da8f
0d68f7a
703da8f
0d68f7a
703da8f
 
0d68f7a
703da8f
0d68f7a
703da8f
f53f1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ecbefa
160d2be
f53f1a8
 
160d2be
f53f1a8
 
6ecbefa
f53f1a8
 
6ecbefa
 
 
f53f1a8
6ecbefa
fe88dba
f53f1a8
 
 
 
 
 
 
 
 
 
 
 
 
a84e35d
 
 
f53f1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fde712
 
 
 
 
 
 
 
 
d11ef97
6fde712
 
 
 
 
 
 
f53f1a8
 
 
 
 
cb3e469
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
language: en
tags:
- QA
- long context
- Q&A
datasets:
- squad_v2
model-index:
- name: mrm8488/longformer-base-4096-finetuned-squadv2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 79.9242
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc0YWU0OTlhNWY1MDYwZjBhYTkxZTBhZGEwNGYzZjQzNzkzNjFlZmExMjkwZDRhNmI2ZmMxZGI3ZjUzNzg4NyIsInZlcnNpb24iOjF9.5ZM5B9hvMhKqFneX-R53j2orSroUQNNov9zo7401MtyDL1Nfp2ZgqoUQ2teCy47pBkoqktn0j9lvUFL3BjmlAA
    - type: f1
      value: 83.3467
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzBiZDQ1ODg3MDYyODdkMGJjYTkxM2ExNzliYmRlYjllZTc1ZjIxODkxODkyM2QzZjg5MDhiMmQ2MTFjNGUxYiIsInZlcnNpb24iOjF9.bs4hfGGy_m5KBue2qmpGCWL28esYvJ9ms2Bhwnp1vpWiQbiTV3TDGk6Ds3wKuaBTEw_7rzePlbYNt9auHoQaDQ
---

# Longformer-base-4096 fine-tuned on SQuAD v2

[Longformer-base-4096 model](https://huggingface.co/allenai/longformer-base-4096) fine-tuned on [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task.

## Longformer-base-4096

[Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. 

`longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096. 
 
Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations.

## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓

Dataset ID: ```squad_v2``` from  [HuggingFace/Datasets](https://github.com/huggingface/datasets)

| Dataset  | Split | # samples |
| -------- | ----- | --------- |
| squad_v2 | train | 130319     |
| squad_v2 | valid  | 11873     |

How to load it from [datasets](https://github.com/huggingface/datasets)

```python
!pip install datasets
from datasets import load_dataset
dataset = load_dataset('squad_v2')
```

Check out more about this dataset and others in [Datasets Viewer](https://huggingface.co/datasets/viewer/)


## Model fine-tuning 🏋️‍

The training script is a slightly modified version of [this one](https://colab.research.google.com/drive/1zEl5D-DdkBKva-DdreVOmN0hrAfzKG1o?usp=sharing)



## Model in Action 🚀

```python
import torch
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2"
tokenizer = AutoTokenizer.from_pretrained(ckpt)
model = AutoModelForQuestionAnswering.from_pretrained(ckpt)

text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done ?"
encoding = tokenizer(question, text, return_tensors="pt")
input_ids = encoding["input_ids"]

# default is local attention everywhere
# the forward method will automatically set global attention on question tokens
attention_mask = encoding["attention_mask"]

start_scores, end_scores = model(input_ids, attention_mask=attention_mask)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())

answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))

# output => democratized NLP
```

## Usage with HF `pipleine`
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline

ckpt = "mrm8488/longformer-base-4096-finetuned-squadv2"
tokenizer = AutoTokenizer.from_pretrained(ckpt)
model = AutoModelForQuestionAnswering.from_pretrained(ckpt)

qa = pipeline("question-answering", model=model, tokenizer=tokenizer)

text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done?"

qa({"question": question, "context": text})
```

If given the same context we ask something that is not there, the output for **no answer** will be ```<s>```

> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)

> Made with <span style="color: #e25555;">&hearts;</span> in Spain

[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/Y8Y3VYYE)