--- language: - spa license: apache-2.0 base_model: openai/whisper-small tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: mrm8488/speaker-segmentation-fine-tuned-callhome-spa results: [] --- # mrm8488/speaker-segmentation-fine-tuned-callhome-spa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.5179 - Der: 0.1717 - False Alarm: 0.0717 - Missed Detection: 0.0687 - Confusion: 0.0312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.6432 | 1.0 | 382 | 0.5219 | 0.1750 | 0.0646 | 0.0755 | 0.0349 | | 0.6133 | 2.0 | 764 | 0.5387 | 0.1821 | 0.0749 | 0.0717 | 0.0356 | | 0.615 | 3.0 | 1146 | 0.5146 | 0.1729 | 0.0748 | 0.0666 | 0.0315 | | 0.6268 | 4.0 | 1528 | 0.5220 | 0.1727 | 0.0711 | 0.0690 | 0.0326 | | 0.6037 | 5.0 | 1910 | 0.5179 | 0.1717 | 0.0717 | 0.0687 | 0.0312 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1