Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,56 @@
|
|
|
|
1 |
---
|
2 |
tags:
|
|
|
|
|
3 |
- deep-reinforcement-learning
|
4 |
- reinforcement-learning
|
5 |
- stable-baselines3
|
6 |
---
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#@title
|
2 |
---
|
3 |
tags:
|
4 |
+
- bipedal
|
5 |
+
- walker
|
6 |
- deep-reinforcement-learning
|
7 |
- reinforcement-learning
|
8 |
- stable-baselines3
|
9 |
---
|
10 |
+
# PPO BipedalWalker v3
|
11 |
+
|
12 |
+
This is a pre-trained model of a PPO agent playing BipedalWalker-v3 using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library.
|
13 |
+
|
14 |
+
<video loop="" autoplay="" controls="" src="https://huggingface.co/mrm8488/ppo-BipedalWalker-v3/resolve/main/output.mp4"></video>
|
15 |
+
|
16 |
+
### Usage (with Stable-baselines3)
|
17 |
+
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install stable-baselines3
|
21 |
+
pip install huggingface_sb3
|
22 |
+
```
|
23 |
+
|
24 |
+
Then, you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
import gym
|
28 |
+
|
29 |
+
from huggingface_sb3 import load_from_hub
|
30 |
+
from stable_baselines3 import PPO
|
31 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
32 |
+
|
33 |
+
# Retrieve the model from the hub
|
34 |
+
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
|
35 |
+
## filename = name of the model zip file from the repository
|
36 |
+
checkpoint = load_from_hub(repo_id="mrm8488/ppo-BipedalWalker-v3", filename="bipedalwalker-v3.zip")
|
37 |
+
model = PPO.load(checkpoint)
|
38 |
+
|
39 |
+
# Evaluate the agent
|
40 |
+
eval_env = gym.make('{environment}')
|
41 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
42 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
43 |
+
|
44 |
+
# Watch the agent play
|
45 |
+
obs = env.reset()
|
46 |
+
for i in range(1000):
|
47 |
+
action, _state = model.predict(obs)
|
48 |
+
obs, reward, done, info = env.step(action)
|
49 |
+
env.render()
|
50 |
+
if done:
|
51 |
+
obs = env.reset()
|
52 |
+
env.close()
|
53 |
+
```
|
54 |
+
|
55 |
+
### Evaluation Results
|
56 |
+
Mean_reward: 213.55 +/- 113.82
|