{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a21b957f340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706840601894420538, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaoBT5TfAc/0nz7vVystr6Unps7H7iRvQAAAAAAAAAAJnyRPSSWvz+G0+8+1JPLPYbjWD16Zl0+AAAAAAAAAAAAym29d9QwPwabZb2gaNW+3ZozPAuTkLwAAAAAAAAAAMDGi721jFo//NVGPO1j2r7WKzS9epQDvQAAAAAAAAAAACDBOpZwrz/F4Ms8S5rfvoT92zswynE9AAAAAAAAAACAG8e9h70KPqbqBz78hCu+GdJPvPo3Zj4AAAAAAAAAAPWKgb4YVJk/bs0Ov4DEHL9PzZW+EkzpOwAAAAAAAAAAzTovvW6isD9egxW/pDyNvjQDTzwNy6S9AAAAAAAAAADDGH++JKAYvQJidbz9uAC7CsyGPnoGvjsAAIA/AACAPzPMpD4C9n4/6z44Pi0c/767xas+prONvQAAAAAAAAAAc7ilPcsPmT0JnZK9vPozvvH9JD0XqL43AAAAAAAAAADGBim+v3xbPx4Lqbtmqua+IGuRvap9eD0AAAAAAAAAABomG73gAPk+kEzVPT3BbL6myva89sAtPQAAAAAAAAAAIL5DvmeW5j4QwKA8QIqqvhSVbb3M5KI8AAAAAAAAAADNZBe8SKGIuo6ThrIXbuswOlMAO5UP+DIAAIA/AACAP3oxFD5NdJc+KBXyvX/Xfr435DS8ql5CPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJy1ImPYFuMAWyUTRYBjAF0lEdAkaRg/X5FgHV9lChoBkdAb2KI/qxC6mgHTQgBaAhHQJGkhzgdfb91fZQoaAZHQG1lPnSv1UVoB0v7aAhHQJGk2VC5Vfh1fZQoaAZHQHFxqMefZmJoB00mAWgIR0CRpTfEGZ/kdX2UKGgGR0Bsd61mapgkaAdNFQFoCEdAkaZxd6cAinV9lChoBkdAcOFtQbdadWgHTT0BaAhHQJGoOEytV7x1fZQoaAZHQEAL7Uoa1kVoB0veaAhHQJGoexwAEMd1fZQoaAZHQHDK3rIHTqloB00wAWgIR0CRqOM7lq8EdX2UKGgGR0BxuMeyRjjJaAdNDwFoCEdAkajg/X5FgHV9lChoBkdAZi986V+qi2gHTegDaAhHQJGpB9Cu2Z11fZQoaAZHQHJdvpdKNAFoB00xAWgIR0CRqnLL6k6+dX2UKGgGR0Bu01XmvGIbaAdL/WgIR0CRq4CCz1K5dX2UKGgGR0Bv2ltGd7OWaAdL8mgIR0CRq7djoZAIdX2UKGgGR0Bw8sMF2V3VaAdNHgFoCEdAkawPZRKpUHV9lChoBkdAbvmSg5BC2WgHS+NoCEdAkaxByjpLVXV9lChoBkdAcg2mT1TR6WgHS/NoCEdAkaz4371qWXV9lChoBkdAcNSGIbfgrGgHTRcBaAhHQJGteJHiFTN1fZQoaAZHQHKLe3Ytg8doB00ZAWgIR0CRrZ5p8F6idX2UKGgGR0BxJ4BXCCSSaAdNPAFoCEdAka3IecQRPHV9lChoBkdAcdzd9Ujs2WgHTQMBaAhHQJGw1RwZOzp1fZQoaAZHQG/ULApKBd5oB00CAWgIR0CRsPoePq9odX2UKGgGR0BzNZ24d6syaAdNDwFoCEdAkbE+bAk9lnV9lChoBkdAcUPMK1G9YmgHTSQBaAhHQJGxghs67ul1fZQoaAZHQHDdU4vN/vxoB007AWgIR0CRsfga3qiXdX2UKGgGR0BxxW4Wk8A8aAdNxgNoCEdAkbLlhCtzS3V9lChoBkdAcGNCMglniGgHTQABaAhHQJGz1BLPD511fZQoaAZHQHDLtCRfWtloB00QAWgIR0CRtCZccENfdX2UKGgGR0Buv9nIyTIOaAdNEQFoCEdAkbTDrmhdt3V9lChoBkdAcg9RekYXPGgHS+1oCEdAkbUlwHZ9NXV9lChoBkdAcfqi5uqFRGgHTSoBaAhHQJG1xb6guh91fZQoaAZHQG9fKL876pJoB00CAWgIR0CRtiq94/u9dX2UKGgGR0BuhJjJ+2E1aAdNFAFoCEdAkbaMFEAo5XV9lChoBkdAcToVxS5y2mgHTTsBaAhHQJG3DNwBHTZ1fZQoaAZHQFFb42CNCJJoB0u+aAhHQJG3KuwHJLd1fZQoaAZHQHGuttQ9A5doB00TAWgIR0CRuYpItlI3dX2UKGgGR0Bu7rLQokRjaAdNAQFoCEdAkbmY+OfdynV9lChoBkdAce+zollbvGgHTRwBaAhHQJG6KTEBKcx1fZQoaAZHQHKkhjjJdSloB00pAWgIR0CRu0+y7f52dX2UKGgGR0ByQ0qy4Wk8aAdL8GgIR0CRu490zTF3dX2UKGgGR0ByacADJU5uaAdL4WgIR0CRvA2BreqJdX2UKGgGR0Bw/eQNkOI7aAdNCAFoCEdAkbzscMmWt3V9lChoBkdActrEfDDTB2gHTSwBaAhHQJG9MX7+DOF1fZQoaAZHQG2DATqSowVoB00PAWgIR0CRvqjQiRnwdX2UKGgGR0ByE4dq+JxeaAdNkwJoCEdAkb9ZdSl3yXV9lChoBkdAcPC4XXRPXWgHTR8BaAhHQJG/mIgvDgt1fZQoaAZHQHCStLUTcqRoB00dAWgIR0CRwDD7ZWaMdX2UKGgGR0Bv7hgXuVopaAdNLgFoCEdAkdNuhsZYP3V9lChoBkdAbWSMAFPi1mgHTQUBaAhHQJHVkG7jDKp1fZQoaAZHwBPjSb6P8yhoB0vGaAhHQJHVmLcbiqB1fZQoaAZHQHAnPechC+loB00QAWgIR0CR1poZAIIGdX2UKGgGR0By8VzFMqSYaAdNCAJoCEdAkdcWnsLORnV9lChoBkdAciMpVS4vvmgHTUsBaAhHQJHX+s0YTCd1fZQoaAZHQHInMSCe2/loB00UAWgIR0CR1/iV0Lc9dX2UKGgGR0BwJjxz7uUmaAdL52gIR0CR2GTYukDZdX2UKGgGR0BmUpISUTtcaAdN6ANoCEdAkdnbDhtLtnV9lChoBkdAcofknTiKi2gHTUoBaAhHQJHac163RXx1fZQoaAZHQHDAKq0dBB1oB00zAWgIR0CR2pADaGpNdX2UKGgGR0ByDxvqC6H1aAdNFQFoCEdAkdvbSE12q3V9lChoBkdAcL1MF2V3U2gHTQABaAhHQJHcAIRh+fB1fZQoaAZHQHEMdfkWAPNoB00nAWgIR0CR3J2dd3SsdX2UKGgGR0BwGH7pFCswaAdNGwFoCEdAkd00wN9YwXV9lChoBkdAcMW4yGi5/mgHTV8BaAhHQJHde2SdOIt1fZQoaAZHQHC9tU4rBj5oB00GAWgIR0CR3eRV6u4gdX2UKGgGR0BtoT1/Ue+3aAdNFwFoCEdAkd5dZaFEiXV9lChoBkdAcmWjDsMRYmgHTR4BaAhHQJHfgJOWSlp1fZQoaAZHQHHwKYAsCkpoB00LAWgIR0CR4CphnanKdX2UKGgGR0BxnOn62v0RaAdNMAFoCEdAkeB+XZ5AyHV9lChoBkdAcGGQE6kqMGgHS+1oCEdAkeDxP420iXV9lChoBkdAceaBN21Ul2gHS/1oCEdAkeID2vjfenV9lChoBkdAckp3FDOTq2gHTQUBaAhHQJHiZy3kPtl1fZQoaAZHQHEFIVdonKJoB0v3aAhHQJHjTazu4PR1fZQoaAZHQHC35bQkX1toB01oAWgIR0CR42iRW912dX2UKGgGR0By1AfigkC4aAdNGQFoCEdAkeSHwG4ZuXV9lChoBkdAb+iC0WuX/2gHTQsBaAhHQJHlYKiO/+N1fZQoaAZHQHI9ZIYm9g5oB00hAWgIR0CR5XVKwpvxdX2UKGgGR0BvkEUIsyzpaAdNEQFoCEdAkeXgV45cT3V9lChoBkdAcvxhaTwDvGgHTRcBaAhHQJHnIOiFj/d1fZQoaAZHQHE3cUAT7EZoB00sAWgIR0CR5z2Dxsl+dX2UKGgGR0BsaqvNeMQ3aAdNCAFoCEdAkeiXhCMP0HV9lChoBkdAY6dYNAkcCGgHTegDaAhHQJHo7z9S/CZ1fZQoaAZHQHFOavaDf3xoB00KAWgIR0CR6Zx0+1SgdX2UKGgGR0Bwe1YwIt17aAdNHwFoCEdAkenJSm65G3V9lChoBkdAcMyWZZ0Sy2gHS+doCEdAken92X9it3V9lChoBkdAcZ7QUYbbUWgHTQ0BaAhHQJHqznmq5sl1fZQoaAZHQHJKPYjB2wFoB00UAWgIR0CR7H9xIatLdX2UKGgGR0By3523azu4aAdNAwFoCEdAke0W29cry3V9lChoBkdAceYSKFZgX2gHTWEBaAhHQJHvDmCAc1h1fZQoaAZHQHENpNbkfcNoB0v5aAhHQJHvjh0hePd1fZQoaAZHQHMnL1qWTotoB01HAWgIR0CR8I38XN1RdX2UKGgGR0BvqmiBXjlxaAdNOQFoCEdAkfCWUGFBY3V9lChoBkdAcHL7D2rXDmgHS+xoCEdAkfHLQswta3V9lChoBkdActstbcGke2gHTTkBaAhHQJHyDiVB2Oh1fZQoaAZHQEmB90ihWYFoB0vSaAhHQJHyQGfPHDJ1fZQoaAZHQG8Rt2cJ+lVoB00QAWgIR0CR8mfHggoxdX2UKGgGR0BuS/RPXTVlaAdNIAFoCEdAkfKaBRQ793V9lChoBkdAcDMLuQZGa2gHTQ4BaAhHQJHzGQjlgc91fZQoaAZHQHEwG56MR6FoB01ZA2gIR0CR87zzVc2SdX2UKGgGR0Bxicg7o0Q9aAdL2WgIR0CR9J87ZFoddX2UKGgGR0BwWYd7v5P/aAdL8mgIR0CR9NaOPvKEdX2UKGgGR0Buu7N0NjLCaAdNiAJoCEdAkfTw2MsH0XVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}