Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +20 -20
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1346.23 +/- 116.17
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:982d52f9188f4792f35c60989b6ecb3e449ea52f256a863b883c97277f227f67
|
3 |
+
size 129527
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -32,17 +32,17 @@
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
-
"num_timesteps":
|
36 |
-
"_total_timesteps":
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"_last_obs": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
45 |
-
":serialized:": "
|
46 |
},
|
47 |
"_last_episode_starts": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -50,7 +50,7 @@
|
|
50 |
},
|
51 |
"_last_original_obs": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
-
":serialized:": "
|
54 |
},
|
55 |
"_episode_num": 0,
|
56 |
"use_sde": true,
|
@@ -59,13 +59,13 @@
|
|
59 |
"_stats_window_size": 100,
|
60 |
"ep_info_buffer": {
|
61 |
":type:": "<class 'collections.deque'>",
|
62 |
-
":serialized:": "
|
63 |
},
|
64 |
"ep_success_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
67 |
},
|
68 |
-
"_n_updates":
|
69 |
"n_steps": 8,
|
70 |
"gamma": 0.99,
|
71 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1f5648b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1f5648c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1f5648ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1f5648d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe1f5648dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe1f5648e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe1f5648ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1f5648f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe1f5649000>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1f5649090>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1f5649120>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1f56491b0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe1f5e50ac0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
+
"num_timesteps": 2500000,
|
36 |
+
"_total_timesteps": 2500000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1689669179616997206,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"_last_obs": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANeyjj9c2+O+xObfPnZLpD/W/yk/k3IOwBsEWDk27/W+qLaFPlMDs79PeSM9VV5UwPAkAL8I0Tg/bkjFvqCWEj2gs9a9XCDhPzrPgr4cc9K+dUimPwsKrT9+rOI+vP3SP+uomL8Y87Q+hLwkPwgIcb9dv6Y/STjfvkd54j61e8c/iEuFv5xJm75sxy+/wffOv6AuDT8LFM6/svkZP8H7EsD4/o+/7dGaPsNfzj4wZ1M/DsCbvzNYFr0/VSU/6JM3vD0UOD7G+SI/W6eJvtdbwz/rqJi/GPO0PoS8JD8ICHG/rwZxPzr3l77/kwI/S0mNP1uFrb/DsBY/MdOjvoSuYb+36Xw/5nV0v59o6D7zdBvAcZtkv7qDLT9+RB8+t+yQP7jowr3DIFQ/aRVXvuBxN8B+GbU/y2UYP9g4Jb7fu5s/66iYvxjztD6EvCQ/CAhxvz3ZJj+bm8A+EVMbP3ne4T+5Dv++g/KlP+r94D7P5XS/l4Q6v9rdwr4VvCK/BTBHP/ygAL0MYy0/nrANPqwi3T9ImqE/D4X+vDR3Sz4Ywx3At286v4DQHcCK/IU//T8TP+uomL8Y87Q+Z+nGv/jyhz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
46 |
},
|
47 |
"_last_episode_starts": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
50 |
},
|
51 |
"_last_original_obs": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADk51A2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU0EFvgAAAADWGeK/AAAAAOnmPL0AAAAAFI7dPwAAAAB1xlE9AAAAAMLL8j8AAAAA3IAMPAAAAACHlvK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNu9swAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNWRqb0AAAAATuTkvwAAAACx+1O9AAAAAIT74j8AAAAAaOb8uwAAAAAcCPA/AAAAAOes+TwAAAAAotr3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMuiDzcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAARR48AAAAAMBd8b8AAAAALCsFPgAAAAA+CO4/AAAAALVT6z0AAAAAnx7uPwAAAAB2SQ6+AAAAAPn/478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvLNC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzLH3PQAAAADdU96/AAAAANujmTwAAAAAdi3ePwAAAABN5Gi9AAAAAE3OAEAAAAAApJ3dPQAAAADk0ee/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
54 |
},
|
55 |
"_episode_num": 0,
|
56 |
"use_sde": true,
|
|
|
59 |
"_stats_window_size": 100,
|
60 |
"ep_info_buffer": {
|
61 |
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbST3Hq/ueMAWyUTegDjAF0lEdAsohRKxs2vXV9lChoBkdAktsAiml67mgHTegDaAhHQLKIXWJaaCt1fZQoaAZHQJTgjJHRTjxoB03oA2gIR0CyilLZWaMKdX2UKGgGR0CV3hGVzIV/aAdN6ANoCEdAso3/974SH3V9lChoBkdAk+nO5J9RaWgHTegDaAhHQLKO69i+cpd1fZQoaAZHQJcFM6dUbUBoB03oA2gIR0Cyjvfc8DB/dX2UKGgGR0CWo9lqagEmaAdN6ANoCEdAspEDU+cH4XV9lChoBkdAk8Q0/8l5W2gHTegDaAhHQLKW2xEv0yx1fZQoaAZHQJRwUWpIczZoB03oA2gIR0Cyl/IiTt9hdX2UKGgGR0CVfwHQQcxTaAdN6ANoCEdAspf++HrQgXV9lChoBkdAlYtAwK0D2mgHTegDaAhHQLKZ+armyPd1fZQoaAZHQFeH3Zwn6VNoB0vgaAhHQLKbdPJq7Ad1fZQoaAZHQJYYxjDsMRZoB03oA2gIR0CynbDnmq5tdX2UKGgGR0CR/ZnGsFMaaAdN6ANoCEdAsp6sRkEs8XV9lChoBkdAkyIzXe3x4WgHTegDaAhHQLKeu3r2QGR1fZQoaAZHQJh1XQyAQQNoB03oA2gIR0CyowU6kqMFdX2UKGgGR0CUq0oduHeraAdN6ANoCEdAsqZ4Bq9GqnV9lChoBkdAk4TC+pOvdWgHTegDaAhHQLKnn93KSxJ1fZQoaAZHQI/n5Gz8gp1oB03oA2gIR0Cyp6xybQTmdX2UKGgGR0CU4DOSGJvYaAdN6ANoCEdAsqsi6xxDLXV9lChoBkdAkub03GXHBGgHTegDaAhHQLKtUohY/3Z1fZQoaAZHQJYDrpNbkfdoB03oA2gIR0Cyrj1wPy08dX2UKGgGR0CPuIauOjqOaAdN6ANoCEdAsq5KbMHKOnV9lChoBkdAk+W5U1hsqWgHTegDaAhHQLKyA0/nnuB1fZQoaAZHQJqnhsYVIqdoB03oA2gIR0CytZIYNy5qdX2UKGgGR0CWpg+bExZdaAdN6ANoCEdAsrceYTj//HV9lChoBkdAmObECmuTzWgHTegDaAhHQLK3MbSJCSl1fZQoaAZHQJTKMaFVT75oB03oA2gIR0Cyur7CJoCddX2UKGgGR0CYc1j5sTFmaAdN6ANoCEdAsrzrisGPgnV9lChoBkdAkrmZwn6VMWgHTegDaAhHQLK92v2Xb/R1fZQoaAZHQJL/oBtDUmVoB03oA2gIR0CyvehEfDDTdX2UKGgGR0CaE1Mr3CbdaAdN6ANoCEdAssFkQwsXi3V9lChoBkdAmzZmI0qH5GgHTegDaAhHQLLEqmvGIbh1fZQoaAZHQJNwU3Mpw0hoB03oA2gIR0CyxiTVtoBadX2UKGgGR0CYRcnAqNIcaAdN6ANoCEdAssY5J04io3V9lChoBkdAlhNg1R+BpmgHTegDaAhHQLLKI0BOpKl1fZQoaAZHQJccaCg9NetoB03oA2gIR0CyzFM6ij+KdX2UKGgGR0CVTYmp2ll9aAdN6ANoCEdAss1DQgLZz3V9lChoBkdAl+tOiJwbVGgHTegDaAhHQLLNT/smfGx1fZQoaAZHQJVwznRsuWdoB03oA2gIR0Cy0L+mzjWDdX2UKGgGR0CVdXvhZQpGaAdN6ANoCEdAstPNRTCLuXV9lChoBkdAkybwPmPo3mgHTegDaAhHQLLVUSUTtb91fZQoaAZHQJRF/cUM5OtoB03oA2gIR0Cy1WRvR7Z4dX2UKGgGR0CWifZvDP4VaAdN6ANoCEdAstm3dbgTAXV9lChoBkdAlHSTIzWPLmgHTegDaAhHQLLb3ZqmCRR1fZQoaAZHQJWr6g5BC2NoB03oA2gIR0Cy3MwE6kqMdX2UKGgGR0CW0pHAymALaAdN6ANoCEdAstzYKu0TlHV9lChoBkdAjFwH8baRIWgHTegDaAhHQLLgRB42S+x1fZQoaAZHQJfh8lD4QBhoB03oA2gIR0Cy4sGf029+dX2UKGgGR0CW0OMn7YTTaAdN6ANoCEdAsuQkwztTk3V9lChoBkdAlgGIsiB5HGgHTegDaAhHQLLkOOU+s5p1fZQoaAZHQJTvjdWQwK1oB03oA2gIR0Cy6QnOKO1fdX2UKGgGR0CUkDqyGBWgaAdN6ANoCEdAsus8gow223V9lChoBkdAl6SRxYJVsGgHTegDaAhHQLLsKaaCtih1fZQoaAZHQJWnU3xWkrRoB03oA2gIR0Cy7DazZ6D5dX2UKGgGR0CXM8YtxuKoaAdN6ANoCEdAsu+fOkcjq3V9lChoBkdAlgeiqhlDnmgHTegDaAhHQLLyDIEr5Ip1fZQoaAZHQJOYMYdhiLFoB03oA2gIR0Cy83ldszl+dX2UKGgGR0CYRtTlkpZwaAdN6ANoCEdAsvOK4smOVHV9lChoBkdAlOxQn+hoNGgHTegDaAhHQLL4j+IuXeF1fZQoaAZHQJWB1/8VHnVoB03oA2gIR0Cy+r7or4FidX2UKGgGR0CVcR/fwZwXaAdN6ANoCEdAsvuvGff4y3V9lChoBkdAmVjGgFotc2gHTegDaAhHQLL7vHYYixF1fZQoaAZHQJL3p0/4ZdhoB03oA2gIR0Cy/zgBgeA/dX2UKGgGR0CVNeoHs1KoaAdN6ANoCEdAswFp9BrvcHV9lChoBkdAlR71fJFLFmgHTegDaAhHQLMCphFmWdF1fZQoaAZHQIlm5yp71I1oB03oA2gIR0CzArfg75mAdX2UKGgGR0CWatYNy5qeaAdN6ANoCEdAswgFo11nunV9lChoBkdAmO9VEmY0EWgHTegDaAhHQLMKM3fQ8fV1fZQoaAZHQJQNSSzPa+NoB03oA2gIR0CzCyO85CF9dX2UKGgGR0CREJ7GvOhTaAdN6ANoCEdAswsxS1mapnV9lChoBkdAlLmwIUrTY2gHTegDaAhHQLMOqH0K7Zp1fZQoaAZHQJdyjIT4+KVoB03oA2gIR0CzEOnpjc2zdX2UKGgGR0CVd1dweeWfaAdN6ANoCEdAsxHbIjnmrHV9lChoBkdAlJEK9f1Hv2gHTegDaAhHQLMR7cOLBKt1fZQoaAZHQJXSqsCDEm9oB03oA2gIR0CzF196w+t9dX2UKGgGR0CSDUFBY3efaAdN6ANoCEdAsxnIVDa4+nV9lChoBkdAkwkdm16VuGgHTegDaAhHQLMau/7iyY51fZQoaAZHQJfSCk/KQq9oB03oA2gIR0CzGsiTlkpadX2UKGgGR0CWCSFwDNhWaAdN6ANoCEdAsx45WCEpRXV9lChoBkdAlHAV90A93mgHTegDaAhHQLMgY+H8CPp1fZQoaAZHQJXR480UGmloB03oA2gIR0CzIVQpSaVldX2UKGgGR0CWhUAjY7JXaAdN6ANoCEdAsyFgOMERrnV9lChoBkdAk27dVea8YmgHTegDaAhHQLMmPp/PPcB1fZQoaAZHQJaUJS0jTrpoB03oA2gIR0CzKQD2WY4RdX2UKGgGR0CQZBMOPNmlaAdN6ANoCEdAsynvKV6eG3V9lChoBkdAlgFl7pmmL2gHTegDaAhHQLMp++fh/Al1fZQoaAZHQJJBOEK3NLVoB03oA2gIR0CzLWpZOi35dX2UKGgGR0CMExP557gLaAdN6ANoCEdAsy/WLl3hXXV9lChoBkdAkTedwzch1WgHTegDaAhHQLMww6tknTl1fZQoaAZHQJSqAZl4C6poB03oA2gIR0CzMNAcT8HfdX2UKGgGR0CWgjgTh5xBaAdN6ANoCEdAszVvAfuCw3V9lChoBkdAlG4n7xd6cGgHTegDaAhHQLM4h2W6bvx1fZQoaAZHQJG5QLNOdoZoB03oA2gIR0CzOXdpEhJRdX2UKGgGR0CTrDrJ8v25aAdN6ANoCEdAszmD3L3bmHV9lChoBkdAk4hKeTV2BGgHTegDaAhHQLM89bi6xxF1fZQoaAZHQJLAaH/LkjpoB03oA2gIR0CzP0sRtgrpdX2UKGgGR0CS3ZVhCtzTaAdN6ANoCEdAs0A4f6oES3V9lChoBkdAlJbL26ClJ2gHTegDaAhHQLNARVT72td1fZQoaAZHQJY7oxN7BwdoB03oA2gIR0CzRJVjAi3YdWUu"
|
63 |
},
|
64 |
"ep_success_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
67 |
},
|
68 |
+
"_n_updates": 78125,
|
69 |
"n_steps": 8,
|
70 |
"gamma": 0.99,
|
71 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1c16feec8d984c65ce7f322df973cf21e53b87b095be64a9218715ac7f5ab2c
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4946ba744c3fd5b1249eb9d946760e16687cb1efca253c6a3d58f42b9dfa6778
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x797d41ebc280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x797d41ebc310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x797d41ebc3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x797d41ebc430>", "_build": "<function ActorCriticPolicy._build at 0x797d41ebc4c0>", "forward": "<function ActorCriticPolicy.forward at 0x797d41ebc550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x797d41ebc5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x797d41ebc670>", "_predict": "<function ActorCriticPolicy._predict at 0x797d41ebc700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x797d41ebc790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x797d41ebc820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x797d41ebc8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797d41ec0600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689593533796413586, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAApd6784hx6/edIhP04lFL+pzvy/sJYkv3l4ez4Zlxc/F4kwv6GsHz7BVQ2/CgVkveN1y76yHuC9w/YrPyemRT7yhNS/4RlVPdfOTz+6H/U6gOKwP20LA7z5mmi/5VQjP5+6fD8FCfc+GSHmPmKamL/nFSU/rY2Xv6poaj6QsQJAOFi4vcQMbj8oaDc/MyqIv1vBvb9efAE/Gp1PvyeOILxUCJ++o1u3Pw3ZAL+6uF0/MdbBP6tQJjtHeMU+3jW9vr2/pL/MAw4+jOWNPqejiD4bqIG/BQn3PrdjDsAeulY/AGkjPloEyL71RzI/iPqjvuUUhj6Yax/AoZeVvs1sdb+DipM+jUDyv9DDuT0IkkTAwlOtv0dT8LwUEW0+eyzMvw6jsr5xMOk/D2oWP62U7r9WzwY/Ft4rwGQ//z8lOVm8G6iBvwUJ9z4ZIeY+YpqYv/1W+b/SAIq/+UOrPpeiiL/9Iae+wBhjPZn6pz0CaBc/0seKPwghcrr6xDW/n+hbvK77bz+FByC7nR80P7KpEj2p1qQ+ycGNuxV4Tz9jG+s8uuSwP4ZUM7k2uWS/qNdMvJ+6fD8FCfc+GSHmPh66Vj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABHLAW3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA390OvAAAAABp9/O/AAAAAOM5yb0AAAAALCr8PwAAAAD3HRG+AAAAALOQ/D8AAAAA++vSPQAAAAD1Oua/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoEx/tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEjw9T0AAAAAkzfnvwAAAABEOiW9AAAAAH7N7T8AAAAAzIIOvQAAAABO8OU/AAAAAB2V4bwAAAAABM3gvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBjv7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDByVy8AAAAAE8cAMAAAAAAGUNvvQAAAAC1IOw/AAAAALJGizoAAAAAI9DnPwAAAACcBaI8AAAAAGFa578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH7l21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjKr/PAAAAABuyOO/AAAAAAZOyLwAAAAAJOrwPwAAAACGDJc9AAAAAAPY/D8AAAAADv5NPQAAAAAABfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI1N5LK3d9GMAWyUTegDjAF0lEdAq0qS4e9zwXV9lChoBkdAhyd0sFt8/mgHTegDaAhHQKtM9K9PDYR1fZQoaAZHQItIzb+Lm6poB03oA2gIR0CrUTbj1f3OdX2UKGgGR0COiCXSjQAuaAdN6ANoCEdAq1jJxBE8aHV9lChoBkdAi16JDVpblmgHTegDaAhHQKtbkSmqHXV1fZQoaAZHQIoRmm1pj+doB03oA2gIR0CrXbYLkS26dX2UKGgGR0CO0b94u9OAaAdN6ANoCEdAq2CrSb6P83V9lChoBkdAiytR7zCk42gHTegDaAhHQKtl3tWuHN51fZQoaAZHQIz6MxKxs2xoB03oA2gIR0CraIv5pJwsdX2UKGgGR0CH2q/QjUutaAdN6ANoCEdAq2q1THbRGHV9lChoBkdAiGXWEbo8p2gHTegDaAhHQKtuj1PFefJ1fZQoaAZHQIfqWF6AvtdoB03oA2gIR0CrdorpaA4GdX2UKGgGR0CKVfoX9BKMaAdN6ANoCEdAq3lY9mpVCHV9lChoBkdAikjcNYr8SGgHTegDaAhHQKt7b/6wdKd1fZQoaAZHQIojO01IiC9oB03oA2gIR0CrfmS1E3KkdX2UKGgGR0CHVJYHPeHjaAdN6ANoCEdAq4PCrR0EHXV9lChoBkdAguD34bjtHGgHTegDaAhHQKuGgx20Re11fZQoaAZHQISf5plBhQZoB03oA2gIR0CriKihvitJdX2UKGgGR0CKheCBf8dgaAdN6ANoCEdAq4vxKg7HQ3V9lChoBkdAhm0kJKJ2uGgHTegDaAhHQKuTyrI5o5B1fZQoaAZHQIQ/hpxm03RoB03oA2gIR0Crl2HLidaudX2UKGgGR0CGgOkfLcKxaAdN6ANoCEdAq5mGIGhVVHV9lChoBkdAiGljNpudgGgHTegDaAhHQKuce7Xg9/11fZQoaAZHQIr02hbnoxJoB03oA2gIR0CroZhakhzOdX2UKGgGR0COvyOLiuMdaAdN6ANoCEdAq6Q3nwG4Z3V9lChoBkdAiyNtG/etS2gHTegDaAhHQKumVc5bQkZ1fZQoaAZHQImvOtITXatoB03oA2gIR0CrqS9roGILdX2UKGgGR0CLwkZdfLLZaAdN6ANoCEdAq7A+XPZ7HHV9lChoBkdAj2rwgTyrgmgHTegDaAhHQKu0dP8AJcB1fZQoaAZHQI4YfUx20RhoB03oA2gIR0CrtvC8OCoTdX2UKGgGR0CDBmmIj4YaaAdN6ANoCEdAq7nWJemelXV9lChoBkdAhDZJWvKU3WgHTegDaAhHQKu+/X1anrJ1fZQoaAZHQI9GOwqy4WloB03oA2gIR0CrwbaisXBQdX2UKGgGR0CLJrYqXnhbaAdN6ANoCEdAq8PdfG+9J3V9lChoBkdAj0zsoc7yQWgHTegDaAhHQKvGzpN9H+Z1fZQoaAZHQHTqlC1JDmdoB02IAWgIR0CryPqhL5ARdX2UKGgGR0CNvgHtWuHOaAdN6ANoCEdAq80eYBvJinV9lChoBkdAcZL7o0Q9R2gHTRABaAhHQKvNzTP0I1N1fZQoaAZHQHj539vS+g1oB03oA2gIR0Cr0VWPDHfedX2UKGgGR0CN2AbHZK4AaAdN6ANoCEdAq9eNBSk0rXV9lChoBkdAhUAGNipeeGgHTegDaAhHQKvc50OmR/51fZQoaAZHQISAXcvduYRoB03oA2gIR0Cr3WZSFXaKdX2UKGgGR0CP2LGqgh8qaAdN6ANoCEdAq9+pBHCoCXV9lChoBkdAguVxFRYRumgHTegDaAhHQKvkxLTQVsV1fZQoaAZHQJMWKR+z+m5oB03oA2gIR0Cr6qnbItDldX2UKGgGR0COVFhiLEUCaAdN6ANoCEdAq+td2q1gIHV9lChoBkdAk4SVMyrPt2gHTegDaAhHQKvuuxFAmiR1fZQoaAZHQJGgrQD3dsVoB03oA2gIR0Cr9ZlxffGddX2UKGgGR0CIcI/A0sOHaAdN6ANoCEdAq/rNkrf+CXV9lChoBkdAkvfRY7q6fGgHTegDaAhHQKv7Rb/wRXh1fZQoaAZHQImRUdcSoOxoB03oA2gIR0Cr/XwBYFJQdX2UKGgGR0CQS/WVu76IaAdN6ANoCEdArAKUth/iHnV9lChoBkdAjTFP8ZUDMmgHTegDaAhHQKwH3aGHpKV1fZQoaAZHQI2VKfpUxVRoB03oA2gIR0CsCJXkHUtqdX2UKGgGR0CQCJVM23rlaAdN6ANoCEdArAvWqPwNLHV9lChoBkdAjUW2Qnx8UmgHTegDaAhHQKwTqQQtjCp1fZQoaAZHQIv1wH3UQTVoB03oA2gIR0CsGPmL9/BndX2UKGgGR0CKubAi3XqaaAdN6ANoCEdArBl0I5YHPnV9lChoBkdAjItPt+kP+WgHTegDaAhHQKwbuVwgkkd1fZQoaAZHQIZo+1+iJwdoB03oA2gIR0CsIOk1Mue0dX2UKGgGR0CNVtXuE25yaAdN6ANoCEdArCZBZOi35XV9lChoBkdAivA0s4DLbGgHTegDaAhHQKwmvyuIRAd1fZQoaAZHQIqHu5hBqsVoB019A2gIR0CsJ7xFRYRvdX2UKGgGR0CKm6lk6LflaAdN6ANoCEdArDHYaNuLrHV9lChoBkdAhwdlVDKHPGgHTbYDaAhHQKw3bbg0j1R1fZQoaAZHQIw9R8hLXcxoB03oA2gIR0CsN5unVG1AdX2UKGgGR0B7yK0TlDF7aAdN6ANoCEdArDj/jhky13V9lChoBkdAiscNjCpFTmgHTegDaAhHQKw/m4jrzGx1fZQoaAZHQIyGE/lhgE5oB03oA2gIR0CsROBHskY5dX2UKGgGR0B+ThKaoddWaAdN6ANoCEdArEUP+XJHRXV9lChoBkdAjNkJt78ejmgHTegDaAhHQKxGZrKvFFV1fZQoaAZHQI8jZEa2nbZoB03oA2gIR0CsUDtSqEOBdX2UKGgGR0CNu5tMwlByaAdN6ANoCEdArFYnM0P6K3V9lChoBkdAjY1iC8OCoWgHTegDaAhHQKxWU+6Ae7t1fZQoaAZHQIuU4eJYT0xoB03oA2gIR0CsV6qB/ZuidX2UKGgGR0CNeEVj7Q9iaAdN6ANoCEdArF4miHqNZXV9lChoBkdAiXRvMB6rvWgHTegDaAhHQKxjJsv7FbV1fZQoaAZHQIrvGv6j325oB03oA2gIR0CsY1GD15B1dX2UKGgGR0CINsjxCpm3aAdN6ANoCEdArGSbuF6Av3V9lChoBkdAi2CGe18b72gHTegDaAhHQKxtRUHY6GR1fZQoaAZHQIuuW+49X91oB03oA2gIR0Csc9MrmQr+dX2UKGgGR0CM7ZjbSJCTaAdN6ANoCEdArHP+XTmW+3V9lChoBkdAkCKw+lj3EmgHTegDaAhHQKx1SDmKZUl1fZQoaAZHQI2Uao2n889oB03oA2gIR0Cse9fHPu5SdX2UKGgGR0CUK9lme18caAdN6ANoCEdArIDezv7WNHV9lChoBkdAkLxFq33HrGgHTegDaAhHQKyBCWznied1fZQoaAZHQJFfNY6nzhBoB03oA2gIR0CsglGtZFG5dX2UKGgGR0CNh/d9Dx9YaAdN6ANoCEdArIom8dxQznV9lChoBkdAk8WT3RG+bmgHTegDaAhHQKyRkt6HCXR1fZQoaAZHQJXW8PsiSq5oB03oA2gIR0Cskb+uV5bAdX2UKGgGR0CVOSM0P6KtaAdN6ANoCEdArJMfpUxVQ3V9lChoBkdAlIgMriEQG2gHTegDaAhHQKyZufPHDJl1fZQoaAZHQJORInlXA/NoB03oA2gIR0CsnsAFxGUfdX2UKGgGR0CR5Py5Zr57aAdN6ANoCEdArJ7ta8pTdnV9lChoBkdAjSNpqqOtGWgHTegDaAhHQKygQFRHf/F1fZQoaAZHQJE23SUkfLdoB03oA2gIR0Csp8CI1tO3dX2UKGgGR0CIuCrH2h7FaAdN6ANoCEdArK+kJfICEHV9lChoBkdAk8rSTMaCMGgHTegDaAhHQKyv56AvtdB1fZQoaAZHQJRgdyLhrFhoB03oA2gIR0CssXKynk1edX2UKGgGR0B1GEMAmzBzaAdN6ANoCEdArLgUCmuTzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1f5648b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1f5648c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1f5648ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1f5648d30>", "_build": "<function ActorCriticPolicy._build at 0x7fe1f5648dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe1f5648e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe1f5648ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1f5648f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe1f5649000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1f5649090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1f5649120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1f56491b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe1f5e50ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689669179616997206, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANeyjj9c2+O+xObfPnZLpD/W/yk/k3IOwBsEWDk27/W+qLaFPlMDs79PeSM9VV5UwPAkAL8I0Tg/bkjFvqCWEj2gs9a9XCDhPzrPgr4cc9K+dUimPwsKrT9+rOI+vP3SP+uomL8Y87Q+hLwkPwgIcb9dv6Y/STjfvkd54j61e8c/iEuFv5xJm75sxy+/wffOv6AuDT8LFM6/svkZP8H7EsD4/o+/7dGaPsNfzj4wZ1M/DsCbvzNYFr0/VSU/6JM3vD0UOD7G+SI/W6eJvtdbwz/rqJi/GPO0PoS8JD8ICHG/rwZxPzr3l77/kwI/S0mNP1uFrb/DsBY/MdOjvoSuYb+36Xw/5nV0v59o6D7zdBvAcZtkv7qDLT9+RB8+t+yQP7jowr3DIFQ/aRVXvuBxN8B+GbU/y2UYP9g4Jb7fu5s/66iYvxjztD6EvCQ/CAhxvz3ZJj+bm8A+EVMbP3ne4T+5Dv++g/KlP+r94D7P5XS/l4Q6v9rdwr4VvCK/BTBHP/ygAL0MYy0/nrANPqwi3T9ImqE/D4X+vDR3Sz4Ywx3At286v4DQHcCK/IU//T8TP+uomL8Y87Q+Z+nGv/jyhz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADk51A2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU0EFvgAAAADWGeK/AAAAAOnmPL0AAAAAFI7dPwAAAAB1xlE9AAAAAMLL8j8AAAAA3IAMPAAAAACHlvK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNu9swAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNWRqb0AAAAATuTkvwAAAACx+1O9AAAAAIT74j8AAAAAaOb8uwAAAAAcCPA/AAAAAOes+TwAAAAAotr3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMuiDzcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAARR48AAAAAMBd8b8AAAAALCsFPgAAAAA+CO4/AAAAALVT6z0AAAAAnx7uPwAAAAB2SQ6+AAAAAPn/478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvLNC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzLH3PQAAAADdU96/AAAAANujmTwAAAAAdi3ePwAAAABN5Gi9AAAAAE3OAEAAAAAApJ3dPQAAAADk0ee/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbST3Hq/ueMAWyUTegDjAF0lEdAsohRKxs2vXV9lChoBkdAktsAiml67mgHTegDaAhHQLKIXWJaaCt1fZQoaAZHQJTgjJHRTjxoB03oA2gIR0CyilLZWaMKdX2UKGgGR0CV3hGVzIV/aAdN6ANoCEdAso3/974SH3V9lChoBkdAk+nO5J9RaWgHTegDaAhHQLKO69i+cpd1fZQoaAZHQJcFM6dUbUBoB03oA2gIR0Cyjvfc8DB/dX2UKGgGR0CWo9lqagEmaAdN6ANoCEdAspEDU+cH4XV9lChoBkdAk8Q0/8l5W2gHTegDaAhHQLKW2xEv0yx1fZQoaAZHQJRwUWpIczZoB03oA2gIR0Cyl/IiTt9hdX2UKGgGR0CVfwHQQcxTaAdN6ANoCEdAspf++HrQgXV9lChoBkdAlYtAwK0D2mgHTegDaAhHQLKZ+armyPd1fZQoaAZHQFeH3Zwn6VNoB0vgaAhHQLKbdPJq7Ad1fZQoaAZHQJYYxjDsMRZoB03oA2gIR0CynbDnmq5tdX2UKGgGR0CR/ZnGsFMaaAdN6ANoCEdAsp6sRkEs8XV9lChoBkdAkyIzXe3x4WgHTegDaAhHQLKeu3r2QGR1fZQoaAZHQJh1XQyAQQNoB03oA2gIR0CyowU6kqMFdX2UKGgGR0CUq0oduHeraAdN6ANoCEdAsqZ4Bq9GqnV9lChoBkdAk4TC+pOvdWgHTegDaAhHQLKnn93KSxJ1fZQoaAZHQI/n5Gz8gp1oB03oA2gIR0Cyp6xybQTmdX2UKGgGR0CU4DOSGJvYaAdN6ANoCEdAsqsi6xxDLXV9lChoBkdAkub03GXHBGgHTegDaAhHQLKtUohY/3Z1fZQoaAZHQJYDrpNbkfdoB03oA2gIR0Cyrj1wPy08dX2UKGgGR0CPuIauOjqOaAdN6ANoCEdAsq5KbMHKOnV9lChoBkdAk+W5U1hsqWgHTegDaAhHQLKyA0/nnuB1fZQoaAZHQJqnhsYVIqdoB03oA2gIR0CytZIYNy5qdX2UKGgGR0CWpg+bExZdaAdN6ANoCEdAsrceYTj//HV9lChoBkdAmObECmuTzWgHTegDaAhHQLK3MbSJCSl1fZQoaAZHQJTKMaFVT75oB03oA2gIR0Cyur7CJoCddX2UKGgGR0CYc1j5sTFmaAdN6ANoCEdAsrzrisGPgnV9lChoBkdAkrmZwn6VMWgHTegDaAhHQLK92v2Xb/R1fZQoaAZHQJL/oBtDUmVoB03oA2gIR0CyvehEfDDTdX2UKGgGR0CaE1Mr3CbdaAdN6ANoCEdAssFkQwsXi3V9lChoBkdAmzZmI0qH5GgHTegDaAhHQLLEqmvGIbh1fZQoaAZHQJNwU3Mpw0hoB03oA2gIR0CyxiTVtoBadX2UKGgGR0CYRcnAqNIcaAdN6ANoCEdAssY5J04io3V9lChoBkdAlhNg1R+BpmgHTegDaAhHQLLKI0BOpKl1fZQoaAZHQJccaCg9NetoB03oA2gIR0CyzFM6ij+KdX2UKGgGR0CVTYmp2ll9aAdN6ANoCEdAss1DQgLZz3V9lChoBkdAl+tOiJwbVGgHTegDaAhHQLLNT/smfGx1fZQoaAZHQJVwznRsuWdoB03oA2gIR0Cy0L+mzjWDdX2UKGgGR0CVdXvhZQpGaAdN6ANoCEdAstPNRTCLuXV9lChoBkdAkybwPmPo3mgHTegDaAhHQLLVUSUTtb91fZQoaAZHQJRF/cUM5OtoB03oA2gIR0Cy1WRvR7Z4dX2UKGgGR0CWifZvDP4VaAdN6ANoCEdAstm3dbgTAXV9lChoBkdAlHSTIzWPLmgHTegDaAhHQLLb3ZqmCRR1fZQoaAZHQJWr6g5BC2NoB03oA2gIR0Cy3MwE6kqMdX2UKGgGR0CW0pHAymALaAdN6ANoCEdAstzYKu0TlHV9lChoBkdAjFwH8baRIWgHTegDaAhHQLLgRB42S+x1fZQoaAZHQJfh8lD4QBhoB03oA2gIR0Cy4sGf029+dX2UKGgGR0CW0OMn7YTTaAdN6ANoCEdAsuQkwztTk3V9lChoBkdAlgGIsiB5HGgHTegDaAhHQLLkOOU+s5p1fZQoaAZHQJTvjdWQwK1oB03oA2gIR0Cy6QnOKO1fdX2UKGgGR0CUkDqyGBWgaAdN6ANoCEdAsus8gow223V9lChoBkdAl6SRxYJVsGgHTegDaAhHQLLsKaaCtih1fZQoaAZHQJWnU3xWkrRoB03oA2gIR0Cy7DazZ6D5dX2UKGgGR0CXM8YtxuKoaAdN6ANoCEdAsu+fOkcjq3V9lChoBkdAlgeiqhlDnmgHTegDaAhHQLLyDIEr5Ip1fZQoaAZHQJOYMYdhiLFoB03oA2gIR0Cy83ldszl+dX2UKGgGR0CYRtTlkpZwaAdN6ANoCEdAsvOK4smOVHV9lChoBkdAlOxQn+hoNGgHTegDaAhHQLL4j+IuXeF1fZQoaAZHQJWB1/8VHnVoB03oA2gIR0Cy+r7or4FidX2UKGgGR0CVcR/fwZwXaAdN6ANoCEdAsvuvGff4y3V9lChoBkdAmVjGgFotc2gHTegDaAhHQLL7vHYYixF1fZQoaAZHQJL3p0/4ZdhoB03oA2gIR0Cy/zgBgeA/dX2UKGgGR0CVNeoHs1KoaAdN6ANoCEdAswFp9BrvcHV9lChoBkdAlR71fJFLFmgHTegDaAhHQLMCphFmWdF1fZQoaAZHQIlm5yp71I1oB03oA2gIR0CzArfg75mAdX2UKGgGR0CWatYNy5qeaAdN6ANoCEdAswgFo11nunV9lChoBkdAmO9VEmY0EWgHTegDaAhHQLMKM3fQ8fV1fZQoaAZHQJQNSSzPa+NoB03oA2gIR0CzCyO85CF9dX2UKGgGR0CREJ7GvOhTaAdN6ANoCEdAswsxS1mapnV9lChoBkdAlLmwIUrTY2gHTegDaAhHQLMOqH0K7Zp1fZQoaAZHQJdyjIT4+KVoB03oA2gIR0CzEOnpjc2zdX2UKGgGR0CVd1dweeWfaAdN6ANoCEdAsxHbIjnmrHV9lChoBkdAlJEK9f1Hv2gHTegDaAhHQLMR7cOLBKt1fZQoaAZHQJXSqsCDEm9oB03oA2gIR0CzF196w+t9dX2UKGgGR0CSDUFBY3efaAdN6ANoCEdAsxnIVDa4+nV9lChoBkdAkwkdm16VuGgHTegDaAhHQLMau/7iyY51fZQoaAZHQJfSCk/KQq9oB03oA2gIR0CzGsiTlkpadX2UKGgGR0CWCSFwDNhWaAdN6ANoCEdAsx45WCEpRXV9lChoBkdAlHAV90A93mgHTegDaAhHQLMgY+H8CPp1fZQoaAZHQJXR480UGmloB03oA2gIR0CzIVQpSaVldX2UKGgGR0CWhUAjY7JXaAdN6ANoCEdAsyFgOMERrnV9lChoBkdAk27dVea8YmgHTegDaAhHQLMmPp/PPcB1fZQoaAZHQJaUJS0jTrpoB03oA2gIR0CzKQD2WY4RdX2UKGgGR0CQZBMOPNmlaAdN6ANoCEdAsynvKV6eG3V9lChoBkdAlgFl7pmmL2gHTegDaAhHQLMp++fh/Al1fZQoaAZHQJJBOEK3NLVoB03oA2gIR0CzLWpZOi35dX2UKGgGR0CMExP557gLaAdN6ANoCEdAsy/WLl3hXXV9lChoBkdAkTedwzch1WgHTegDaAhHQLMww6tknTl1fZQoaAZHQJSqAZl4C6poB03oA2gIR0CzMNAcT8HfdX2UKGgGR0CWgjgTh5xBaAdN6ANoCEdAszVvAfuCw3V9lChoBkdAlG4n7xd6cGgHTegDaAhHQLM4h2W6bvx1fZQoaAZHQJG5QLNOdoZoB03oA2gIR0CzOXdpEhJRdX2UKGgGR0CTrDrJ8v25aAdN6ANoCEdAszmD3L3bmHV9lChoBkdAk4hKeTV2BGgHTegDaAhHQLM89bi6xxF1fZQoaAZHQJLAaH/LkjpoB03oA2gIR0CzP0sRtgrpdX2UKGgGR0CS3ZVhCtzTaAdN6ANoCEdAs0A4f6oES3V9lChoBkdAlJbL26ClJ2gHTegDaAhHQLNARVT72td1fZQoaAZHQJY7oxN7BwdoB03oA2gIR0CzRJVjAi3YdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1346.2309201684461, "std_reward": 116.17346925611884, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-18T09:57:19.510855"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2652
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc59b354aa9ab4810533ad4d8cc1993d099b53196fd1995b8f691a2b67bd5681
|
3 |
size 2652
|