--- license: other base_model: "terminusresearch/sana-1.6b-1024px" tags: - sana - sana-diffusers - text-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - lycoris inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_1.png - text: 'A photo of mikrei eating a delicious slice of pizza at a restaurant' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_0.png - text: 'A photo of mikrei eating a delicious slice of pizza at a restaurant' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_3_1.png - text: 'A photo of mikrei feeding a dinousaur in a jungle with lush vegetation and cinematic lighting' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_4_0.png - text: 'A photo of mikrei feeding a dinousaur in a jungle with lush vegetation and cinematic lighting' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_5_1.png - text: 'professional portrait of serious mikrei in a cockpit with instruments piloting a luxurious private jet in dramatic weather' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_6_0.png - text: 'professional portrait of serious mikrei in a cockpit with instruments piloting a luxurious private jet in dramatic weather' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_7_1.png - text: 'close-up portrait of mikrei on a throne in a magnificent palace wearing a crown and royal attire' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_8_0.png - text: 'close-up portrait of mikrei on a throne in a magnificent palace wearing a crown and royal attire' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_9_1.png - text: 'a high-quality, detailed photograph of mikrei as a sous-chef, immersed in the art of culinary creation' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_10_0.png - text: 'a high-quality, detailed photograph of mikrei as a sous-chef, immersed in the art of culinary creation' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_11_1.png - text: 'a lifelike and intimate portrait of mikrei, showcasing his unique personality and charm' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_12_0.png - text: 'a lifelike and intimate portrait of mikrei, showcasing his unique personality and charm' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_13_1.png - text: 'a cinematic, visually stunning photo of mikrei, emphasizing his dramatic and captivating presence' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_14_0.png - text: 'a cinematic, visually stunning photo of mikrei, emphasizing his dramatic and captivating presence' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_15_1.png - text: 'an elegant and timeless portrait of mikrei, exuding grace and sophistication' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_16_0.png - text: 'an elegant and timeless portrait of mikrei, exuding grace and sophistication' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_17_1.png - text: 'a dynamic and adventurous photo of mikrei, captured in an exciting, action-filled moment' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_18_0.png - text: 'a dynamic and adventurous photo of mikrei, captured in an exciting, action-filled moment' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_19_1.png - text: 'a mysterious and enigmatic portrait of mikrei, shrouded in shadows and intrigue' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_20_0.png - text: 'a mysterious and enigmatic portrait of mikrei, shrouded in shadows and intrigue' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_21_1.png - text: 'a vintage-style portrait of mikrei, evoking the charm and nostalgia of a bygone era' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_22_0.png - text: 'a vintage-style portrait of mikrei, evoking the charm and nostalgia of a bygone era' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_23_1.png - text: 'an artistic and abstract representation of mikrei, blending creativity with visual storytelling' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_24_0.png - text: 'an artistic and abstract representation of mikrei, blending creativity with visual storytelling' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_25_1.png - text: 'a futuristic and cutting-edge portrayal of mikrei, set against a backdrop of advanced technology' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_26_0.png - text: 'a futuristic and cutting-edge portrayal of mikrei, set against a backdrop of advanced technology' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_27_1.png - text: 'a beautifully crafted portrait of a woman, highlighting her natural beauty and unique features' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_28_0.png - text: 'a beautifully crafted portrait of a woman, highlighting her natural beauty and unique features' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_29_1.png - text: 'a powerful and striking portrait of a man, capturing his strength and character' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_30_0.png - text: 'a powerful and striking portrait of a man, capturing his strength and character' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_31_1.png - text: 'a playful and spirited portrait of a boy, capturing youthful energy and innocence' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_32_0.png - text: 'a playful and spirited portrait of a boy, capturing youthful energy and innocence' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_33_1.png - text: 'a charming and vibrant portrait of a girl, emphasizing her bright personality and joy' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_34_0.png - text: 'a charming and vibrant portrait of a girl, emphasizing her bright personality and joy' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_35_1.png - text: 'a heartwarming and cohesive family portrait, showcasing the bonds and connections between loved ones' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_36_0.png - text: 'a heartwarming and cohesive family portrait, showcasing the bonds and connections between loved ones' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_37_1.png --- # simpletuner-sana-lora-mikrei-1e-5 This is a LyCORIS adapter derived from [terminusresearch/sana-1.6b-1024px](https://huggingface.co/terminusresearch/sana-1.6b-1024px). No validation prompt was used during training. None ## Validation settings - CFG: `4.0` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `sana` - Seed: `42` - Resolutions: `1024x1024,1280x768` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 4500 - Learning rate: 1e-05 - Learning rate schedule: polynomial - Warmup steps: 100 - Max grad norm: 2.0 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: False - Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing']) - Optimizer: optimi-stableadamw - Trainable parameter precision: Pure BF16 - Caption dropout probability: 10.0% ### LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "linear_alpha": 1, "factor": 16, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 16 }, "FeedForward": { "factor": 8 } } } } ``` ## Datasets ### mikrei-data-512px - Repeats: 1000 - Total number of images: 17 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'terminusresearch/sana-1.6b-1024px' adapter_repo_id = 'mtreinik/simpletuner-sana-lora-mikrei-1e-5' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "An astronaut is riding a horse through the jungles of Thailand." negative_prompt = 'blurry, cropped, ugly' ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=4.0, guidance_rescale=0.0, ).images[0] image.save("output.png", format="PNG") ``` ## Exponential Moving Average (EMA) SimpleTuner generates a safetensors variant of the EMA weights and a pt file. The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning. The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.