Update README.md
Browse files
README.md
CHANGED
@@ -1,48 +1,258 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
##
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
<br>
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
metrics:
|
7 |
+
- cer
|
8 |
+
- bleu
|
9 |
+
tags:
|
10 |
+
- asr
|
11 |
+
- automatic-speech-recognition
|
12 |
+
- automatic-speech-translation
|
13 |
+
- speech-translation
|
14 |
+
- speech-recognition
|
15 |
+
---
|
16 |
+
|
17 |
+
# MooER (ζ©θ³): LLM-based Speech Recognition and Translation Models from Moore Threads
|
18 |
+
|
19 |
+
## π Introduction
|
20 |
+
|
21 |
+
We introduce **MooER (ζ©θ³)**: LLM-based speech recognition and translation models developed by Moore Threads. With the *MooER* framework, you can transcribe the speech into text (speech recognition or, ASR), and translate it into other languages (speech translation or, AST) in a end-to-end manner. The performance of *MooER* is demonstrated in the subsequent section, along with our insights into model configurations, training strategies, and more, provided in our [technical report](https://arxiv.org/abs/2408.05101).
|
22 |
+
|
23 |
+
For the usage of the model files, please refer to our [GitHub](https://github.com/MooreThreads/MooER)
|
24 |
+
|
25 |
+
<br>
|
26 |
+
<p align="center">
|
27 |
+
<img src="assets/framework.png" width="600"/>
|
28 |
+
<p>
|
29 |
+
<br>
|
30 |
+
|
31 |
+
## π₯ Evaluation Results
|
32 |
+
|
33 |
+
We demonstrate the training data and the evaluation results below. For more comprehensive information, please refer to our [report](https://arxiv.org/pdf/2408.05101).
|
34 |
+
|
35 |
+
### Training data
|
36 |
+
|
37 |
+
We utilize 5k hours of data (MT5K) to train our basic *MooER-5K* model. The data sources include:
|
38 |
+
|
39 |
+
| Dataset | Duration |
|
40 |
+
|---------------|---------------|
|
41 |
+
| aishell2 | 137h |
|
42 |
+
| librispeech | 131h |
|
43 |
+
| multi_cn | 100h |
|
44 |
+
| wenetspeech | 1361h |
|
45 |
+
| in-house data | 3274h |
|
46 |
+
|
47 |
+
Note that, data from the open-source datasets were randomly selected from the full training set. The in-house data, collected internally without text, were transcribed using a third-party ASR service.
|
48 |
+
|
49 |
+
Since all the above datasets were originally designed only for the speech recognition task, no translation results are available. To train our speech translation model, we used a third-party translation service to generate pseudo-labels. No data filtering techniques were applied.
|
50 |
+
|
51 |
+
At this moment, we are also developing a new model trained with 80K hours of data.
|
52 |
+
|
53 |
+
### Speech Recognition
|
54 |
+
|
55 |
+
The performance of speech recognition is evaluated using WER/CER.
|
56 |
+
|
57 |
+
<table>
|
58 |
+
<tr>
|
59 |
+
<th>Language</th>
|
60 |
+
<th>Testset</th>
|
61 |
+
<th>Paraformer-large</th>
|
62 |
+
<th>SenseVoice-small</th>
|
63 |
+
<th>Qwen-audio</th>
|
64 |
+
<th>Whisper-large-v3</th>
|
65 |
+
<th>SeamlessM4T-v2</th>
|
66 |
+
<th>MooER-5K</th>
|
67 |
+
<th>MooER-80K</th>
|
68 |
+
</tr>
|
69 |
+
<tr>
|
70 |
+
<td rowspan="7">Chinese</td>
|
71 |
+
<td>aishell1</td>
|
72 |
+
<td>1.93</td>
|
73 |
+
<td>3.03</td>
|
74 |
+
<td>1.43</td>
|
75 |
+
<td>7.86</td>
|
76 |
+
<td>4.09</td>
|
77 |
+
<td>1.93</td>
|
78 |
+
<td>1.25</td>
|
79 |
+
</tr>
|
80 |
+
<tr>
|
81 |
+
<td>aishell2_ios</td>
|
82 |
+
<td>2.85</td>
|
83 |
+
<td>3.79</td>
|
84 |
+
<td>3.57</td>
|
85 |
+
<td>5.38</td>
|
86 |
+
<td>4.81</td>
|
87 |
+
<td>3.17</td>
|
88 |
+
<td>2.67</td>
|
89 |
+
</tr>
|
90 |
+
<tr>
|
91 |
+
<td>test_magicdata</td>
|
92 |
+
<td>3.66</td>
|
93 |
+
<td>3.81</td>
|
94 |
+
<td>5.31</td>
|
95 |
+
<td>8.36</td>
|
96 |
+
<td>9.69</td>
|
97 |
+
<td>3.48</td>
|
98 |
+
<td>2.52</td>
|
99 |
+
</tr>
|
100 |
+
<tr>
|
101 |
+
<td>test_thchs</td>
|
102 |
+
<td>3.99</td>
|
103 |
+
<td>5.17</td>
|
104 |
+
<td>4.86</td>
|
105 |
+
<td>9.06</td>
|
106 |
+
<td>7.14</td>
|
107 |
+
<td>4.11</td>
|
108 |
+
<td>3.14</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td>fleurs cmn_dev</td>
|
112 |
+
<td>5.56</td>
|
113 |
+
<td>6.39</td>
|
114 |
+
<td>10.54</td>
|
115 |
+
<td>4.54</td>
|
116 |
+
<td>7.12</td>
|
117 |
+
<td>5.81</td>
|
118 |
+
<td>5.23</td>
|
119 |
+
</tr>
|
120 |
+
<tr>
|
121 |
+
<td>fleurs cmn_test</td>
|
122 |
+
<td>6.92</td>
|
123 |
+
<td>7.36</td>
|
124 |
+
<td>11.07</td>
|
125 |
+
<td>5.24</td>
|
126 |
+
<td>7.66</td>
|
127 |
+
<td>6.77</td>
|
128 |
+
<td>6.18</td>
|
129 |
+
</tr>
|
130 |
+
<tr>
|
131 |
+
<td>average</td>
|
132 |
+
<td><strong>4.15</strong></td>
|
133 |
+
<td><strong>4.93</strong></td>
|
134 |
+
<td><strong>6.13</strong></td>
|
135 |
+
<td><strong>6.74</strong></td>
|
136 |
+
<td><strong>6.75</strong></td>
|
137 |
+
<td><strong>4.21</strong></td>
|
138 |
+
<td><strong>3.50</strong></td>
|
139 |
+
</tr>
|
140 |
+
<tr>
|
141 |
+
<td rowspan="7">English</td>
|
142 |
+
<td>librispeech test_clean</td>
|
143 |
+
<td>14.15</td>
|
144 |
+
<td>4.07</td>
|
145 |
+
<td>2.15</td>
|
146 |
+
<td>3.42</td>
|
147 |
+
<td>2.77</td>
|
148 |
+
<td>7.78</td>
|
149 |
+
<td>4.11</td>
|
150 |
+
</tr>
|
151 |
+
<tr>
|
152 |
+
<td>librispeech test_other</td>
|
153 |
+
<td>22.99</td>
|
154 |
+
<td>8.26</td>
|
155 |
+
<td>4.68</td>
|
156 |
+
<td>5.62</td>
|
157 |
+
<td>5.25</td>
|
158 |
+
<td>15.25</td>
|
159 |
+
<td>9.99</td>
|
160 |
+
</tr>
|
161 |
+
<tr>
|
162 |
+
<td>fleurs eng_dev</td>
|
163 |
+
<td>24.93</td>
|
164 |
+
<td>12.92</td>
|
165 |
+
<td>22.53</td>
|
166 |
+
<td>11.63</td>
|
167 |
+
<td>11.36</td>
|
168 |
+
<td>18.89</td>
|
169 |
+
<td>13.32</td>
|
170 |
+
</tr>
|
171 |
+
<tr>
|
172 |
+
<td>fleurs eng_test</td>
|
173 |
+
<td>26.81</td>
|
174 |
+
<td>13.41</td>
|
175 |
+
<td>22.51</td>
|
176 |
+
<td>12.57</td>
|
177 |
+
<td>11.82</td>
|
178 |
+
<td>20.41</td>
|
179 |
+
<td>14.97</td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td>gigaspeech dev</td>
|
183 |
+
<td>24.23</td>
|
184 |
+
<td>19.44</td>
|
185 |
+
<td>12.96</td>
|
186 |
+
<td>19.18</td>
|
187 |
+
<td>28.01</td>
|
188 |
+
<td>23.46</td>
|
189 |
+
<td>16.92</td>
|
190 |
+
</tr>
|
191 |
+
<tr>
|
192 |
+
<td>gigaspeech test</td>
|
193 |
+
<td>23.07</td>
|
194 |
+
<td>16.65</td>
|
195 |
+
<td>13.26</td>
|
196 |
+
<td>22.34</td>
|
197 |
+
<td>28.65</td>
|
198 |
+
<td>22.09</td>
|
199 |
+
<td>16.64</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td>average</td>
|
203 |
+
<td><strong>22.70</strong></td>
|
204 |
+
<td><strong>12.46</strong></td>
|
205 |
+
<td><strong>13.02</strong></td>
|
206 |
+
<td><strong>12.46</strong></td>
|
207 |
+
<td><strong>14.64</strong></td>
|
208 |
+
<td><strong>17.98</strong></td>
|
209 |
+
<td><strong>12.66</strong></td>
|
210 |
+
</tr>
|
211 |
+
</table>
|
212 |
+
|
213 |
+
### Speech Translation (zh -> en)
|
214 |
+
|
215 |
+
For speech translation, the performanced is evaluated using BLEU score.
|
216 |
+
|
217 |
+
| Testset | Speech-LLaMA | Whisper-large-v3 | Qwen-audio | Qwen2-audio | SeamlessM4T-v2 | MooER-5K | MooER-5K-MTL |
|
218 |
+
|--------|-------------|-------------------|------------|-------------|-----------------|--------|--------------|
|
219 |
+
|CoVoST1 zh2en | - | 13.5 | 13.5 | - | 25.3 | - | **30.2** |
|
220 |
+
|CoVoST2 zh2en | 12.3 | 12.2 | 15.7 | 24.4 | 22.2 | 23.4 | **25.2** |
|
221 |
+
|CCMT2019 dev | - | 15.9 | 12.0 | - | 14.8 | - | **19.6** |
|
222 |
+
|
223 |
+
|
224 |
+
## π Getting Started
|
225 |
+
|
226 |
+
Please visit our [GitHub](https://github.com/MooreThreads/MooER) for the setup and usage.
|
227 |
+
|
228 |
+
|
229 |
+
## π§Ύ License
|
230 |
+
|
231 |
+
Please see the [LICENSE](LICENSE).
|
232 |
+
|
233 |
+
|
234 |
+
## π Citation
|
235 |
+
|
236 |
+
If you find MooER useful for your research, please π this repo and cite our work using the following BibTeX:
|
237 |
+
|
238 |
+
```bibtex
|
239 |
+
@article{liang2024mooer,
|
240 |
+
title = {MooER: LLM-based Speech Recognition and Translation Models from Moore Threads},
|
241 |
+
author = {Zhenlin Liang, Junhao Xu, Yi Liu, Yichao Hu, Jian Li, Yajun Zheng, Meng Cai, Hua Wang},
|
242 |
+
journal = {arXiv preprint arXiv:2408.05101},
|
243 |
+
url = {https://arxiv.org/abs/2408.05101},
|
244 |
+
year = {2024}
|
245 |
+
}
|
246 |
+
```
|
247 |
+
|
248 |
+
## π§ Contact
|
249 |
+
|
250 |
+
If you encouter any problems, feel free to create a discussion.
|
251 |
+
|
252 |
+
Moore Threads Website: **https://www.mthreads.com/**
|
253 |
+
|
254 |
+
<br>
|
255 |
+
<p align="left">
|
256 |
+
<img src="assets/MTLogo.png" width="300"/>
|
257 |
+
<p>
|
258 |
<br>
|