mtyrrell commited on
Commit
b759a5e
·
1 Parent(s): d3309f9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: IKT_classifier_economywide_best
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # IKT_classifier_economywide_best
16
+
17
+ This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1819
20
+ - Precision Weighted: 0.9628
21
+ - Precision Macro: 0.9639
22
+ - Recall Weighted: 0.9623
23
+ - Recall Samples: 0.9606
24
+ - F1-score: 0.9619
25
+ - Accuracy: 0.9623
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 4.427532456702983e-05
45
+ - train_batch_size: 3
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 6
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 100.0
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision Weighted | Precision Macro | Recall Weighted | Recall Samples | F1-score | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:---------------:|:--------------:|:--------:|:--------:|
59
+ | No log | 1.0 | 159 | 0.1640 | 0.9628 | 0.9639 | 0.9623 | 0.9606 | 0.9619 | 0.9623 |
60
+ | No log | 2.0 | 318 | 0.2042 | 0.9531 | 0.9521 | 0.9528 | 0.9533 | 0.9526 | 0.9528 |
61
+ | No log | 3.0 | 477 | 0.2298 | 0.9457 | 0.9479 | 0.9434 | 0.9402 | 0.9427 | 0.9434 |
62
+ | 0.1907 | 4.0 | 636 | 0.1582 | 0.9718 | 0.9723 | 0.9717 | 0.9708 | 0.9715 | 0.9717 |
63
+ | 0.1907 | 5.0 | 795 | 0.1819 | 0.9628 | 0.9639 | 0.9623 | 0.9606 | 0.9619 | 0.9623 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.30.2
69
+ - Pytorch 2.0.1+cu118
70
+ - Datasets 2.13.1
71
+ - Tokenizers 0.13.3