update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: IKT_classifier_economywide_best
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# IKT_classifier_economywide_best
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1819
|
20 |
+
- Precision Weighted: 0.9628
|
21 |
+
- Precision Macro: 0.9639
|
22 |
+
- Recall Weighted: 0.9623
|
23 |
+
- Recall Samples: 0.9606
|
24 |
+
- F1-score: 0.9619
|
25 |
+
- Accuracy: 0.9623
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 4.427532456702983e-05
|
45 |
+
- train_batch_size: 3
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 2
|
49 |
+
- total_train_batch_size: 6
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 100.0
|
53 |
+
- num_epochs: 5
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision Weighted | Precision Macro | Recall Weighted | Recall Samples | F1-score | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:---------------:|:--------------:|:--------:|:--------:|
|
59 |
+
| No log | 1.0 | 159 | 0.1640 | 0.9628 | 0.9639 | 0.9623 | 0.9606 | 0.9619 | 0.9623 |
|
60 |
+
| No log | 2.0 | 318 | 0.2042 | 0.9531 | 0.9521 | 0.9528 | 0.9533 | 0.9526 | 0.9528 |
|
61 |
+
| No log | 3.0 | 477 | 0.2298 | 0.9457 | 0.9479 | 0.9434 | 0.9402 | 0.9427 | 0.9434 |
|
62 |
+
| 0.1907 | 4.0 | 636 | 0.1582 | 0.9718 | 0.9723 | 0.9717 | 0.9708 | 0.9715 | 0.9717 |
|
63 |
+
| 0.1907 | 5.0 | 795 | 0.1819 | 0.9628 | 0.9639 | 0.9623 | 0.9606 | 0.9619 | 0.9623 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.30.2
|
69 |
+
- Pytorch 2.0.1+cu118
|
70 |
+
- Datasets 2.13.1
|
71 |
+
- Tokenizers 0.13.3
|