File size: 2,878 Bytes
6057056 03c7c28 6057056 03c7c28 6057056 03c7c28 6057056 03c7c28 6057056 03c7c28 6057056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1096
- Exact Match: 63.3508
- F1: 69.1464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| 6.2958 | 0.49 | 36 | 2.4489 | 50.0 | 50.0 |
| 3.6359 | 0.98 | 72 | 1.9610 | 49.8691 | 49.8691 |
| 2.1589 | 1.47 | 108 | 1.8244 | 48.9529 | 49.9787 |
| 2.1589 | 1.96 | 144 | 1.7041 | 49.7382 | 51.8819 |
| 1.9535 | 2.46 | 180 | 1.5846 | 51.0471 | 56.3706 |
| 1.731 | 2.95 | 216 | 1.4596 | 54.0576 | 58.8577 |
| 1.5809 | 3.44 | 252 | 1.3590 | 56.1518 | 61.7069 |
| 1.5809 | 3.93 | 288 | 1.3205 | 56.2827 | 61.9772 |
| 1.4244 | 4.42 | 324 | 1.2688 | 55.8901 | 61.8344 |
| 1.2687 | 4.91 | 360 | 1.2379 | 58.9005 | 64.5444 |
| 1.2687 | 5.4 | 396 | 1.1637 | 62.4346 | 67.9125 |
| 1.1989 | 5.89 | 432 | 1.1675 | 60.7330 | 66.2963 |
| 1.1131 | 6.38 | 468 | 1.1321 | 62.5654 | 68.1655 |
| 1.0568 | 6.87 | 504 | 1.1155 | 62.9581 | 68.6094 |
| 1.0568 | 7.37 | 540 | 1.0895 | 64.1361 | 69.6097 |
| 1.0099 | 7.86 | 576 | 1.1013 | 63.2199 | 69.0324 |
| 0.9784 | 8.35 | 612 | 1.1117 | 63.8743 | 69.3380 |
| 0.9784 | 8.84 | 648 | 1.1096 | 63.3508 | 69.1464 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2
|