File size: 2,878 Bytes
6057056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03c7c28
 
 
6057056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03c7c28
 
6057056
03c7c28
6057056
 
 
 
 
 
 
 
 
03c7c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6057056
 
 
 
03c7c28
6057056
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1096
- Exact Match: 63.3508
- F1: 69.1464

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1      |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| 6.2958        | 0.49  | 36   | 2.4489          | 50.0        | 50.0    |
| 3.6359        | 0.98  | 72   | 1.9610          | 49.8691     | 49.8691 |
| 2.1589        | 1.47  | 108  | 1.8244          | 48.9529     | 49.9787 |
| 2.1589        | 1.96  | 144  | 1.7041          | 49.7382     | 51.8819 |
| 1.9535        | 2.46  | 180  | 1.5846          | 51.0471     | 56.3706 |
| 1.731         | 2.95  | 216  | 1.4596          | 54.0576     | 58.8577 |
| 1.5809        | 3.44  | 252  | 1.3590          | 56.1518     | 61.7069 |
| 1.5809        | 3.93  | 288  | 1.3205          | 56.2827     | 61.9772 |
| 1.4244        | 4.42  | 324  | 1.2688          | 55.8901     | 61.8344 |
| 1.2687        | 4.91  | 360  | 1.2379          | 58.9005     | 64.5444 |
| 1.2687        | 5.4   | 396  | 1.1637          | 62.4346     | 67.9125 |
| 1.1989        | 5.89  | 432  | 1.1675          | 60.7330     | 66.2963 |
| 1.1131        | 6.38  | 468  | 1.1321          | 62.5654     | 68.1655 |
| 1.0568        | 6.87  | 504  | 1.1155          | 62.9581     | 68.6094 |
| 1.0568        | 7.37  | 540  | 1.0895          | 64.1361     | 69.6097 |
| 1.0099        | 7.86  | 576  | 1.1013          | 63.2199     | 69.0324 |
| 0.9784        | 8.35  | 612  | 1.1117          | 63.8743     | 69.3380 |
| 0.9784        | 8.84  | 648  | 1.1096          | 63.3508     | 69.1464 |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2