Commit
路
b6765e8
1
Parent(s):
1340f28
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.2364
|
20 |
+
- Exact Match: 50.2618
|
21 |
+
- F1: 57.5214
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 16
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
|
54 |
+
| 6.151 | 0.49 | 36 | 2.7223 | 32.5916 | 35.4445 |
|
55 |
+
| 3.5424 | 0.98 | 72 | 2.0664 | 24.2147 | 31.0371 |
|
56 |
+
| 2.2082 | 1.48 | 108 | 1.7388 | 28.0105 | 37.2690 |
|
57 |
+
| 2.2082 | 1.97 | 144 | 1.4742 | 37.0419 | 45.3625 |
|
58 |
+
| 1.6932 | 2.46 | 180 | 1.3193 | 43.3246 | 51.1270 |
|
59 |
+
| 1.3154 | 2.95 | 216 | 1.2731 | 46.2042 | 53.5503 |
|
60 |
+
| 1.1699 | 3.45 | 252 | 1.2327 | 46.4660 | 53.5656 |
|
61 |
+
| 1.1699 | 3.94 | 288 | 1.1998 | 48.1675 | 55.1907 |
|
62 |
+
| 1.0749 | 4.44 | 324 | 1.1949 | 51.0471 | 57.7164 |
|
63 |
+
| 0.9423 | 4.93 | 360 | 1.1855 | 50.6545 | 57.3903 |
|
64 |
+
| 0.9423 | 5.42 | 396 | 1.1931 | 51.3089 | 58.5981 |
|
65 |
+
| 0.9036 | 5.91 | 432 | 1.2045 | 50.3927 | 57.7468 |
|
66 |
+
| 0.8324 | 6.41 | 468 | 1.2363 | 48.2984 | 55.5302 |
|
67 |
+
| 0.7846 | 6.9 | 504 | 1.2364 | 50.2618 | 57.5214 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.26.1
|
73 |
+
- Pytorch 1.13.1+cu117
|
74 |
+
- Datasets 2.2.0
|
75 |
+
- Tokenizers 0.13.2
|