--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05 results: [] --- # fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05 This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2364 - Exact Match: 50.2618 - F1: 57.5214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 6.151 | 0.49 | 36 | 2.7223 | 32.5916 | 35.4445 | | 3.5424 | 0.98 | 72 | 2.0664 | 24.2147 | 31.0371 | | 2.2082 | 1.48 | 108 | 1.7388 | 28.0105 | 37.2690 | | 2.2082 | 1.97 | 144 | 1.4742 | 37.0419 | 45.3625 | | 1.6932 | 2.46 | 180 | 1.3193 | 43.3246 | 51.1270 | | 1.3154 | 2.95 | 216 | 1.2731 | 46.2042 | 53.5503 | | 1.1699 | 3.45 | 252 | 1.2327 | 46.4660 | 53.5656 | | 1.1699 | 3.94 | 288 | 1.1998 | 48.1675 | 55.1907 | | 1.0749 | 4.44 | 324 | 1.1949 | 51.0471 | 57.7164 | | 0.9423 | 4.93 | 360 | 1.1855 | 50.6545 | 57.3903 | | 0.9423 | 5.42 | 396 | 1.1931 | 51.3089 | 58.5981 | | 0.9036 | 5.91 | 432 | 1.2045 | 50.3927 | 57.7468 | | 0.8324 | 6.41 | 468 | 1.2363 | 48.2984 | 55.5302 | | 0.7846 | 6.9 | 504 | 1.2364 | 50.2618 | 57.5214 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2