File size: 20,417 Bytes
5a0ae56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
# Have SwinIR upsample
# Have BLIP auto caption
# Have CLIPSeg auto mask concept
import gc
import fnmatch
import mimetypes
import os
import re
import shutil
import tarfile
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union
from zipfile import ZipFile
import cv2
import mediapipe as mp
import numpy as np
import pandas as pd
import torch
from PIL import Image, ImageFilter
from tqdm import tqdm
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
Swin2SRForImageSuperResolution,
Swin2SRImageProcessor,
)
from predict import download_weights
# model is fixed to Salesforce/blip-image-captioning-large
BLIP_URL = "https://weights.replicate.delivery/default/blip_large/blip_large.tar"
BLIP_PROCESSOR_URL = (
"https://weights.replicate.delivery/default/blip_processor/blip_processor.tar"
)
BLIP_PATH = "./blip-cache"
BLIP_PROCESSOR_PATH = "./blip-proc-cache"
# model is fixed to CIDAS/clipseg-rd64-refined
CLIPSEG_URL = "https://weights.replicate.delivery/default/clip_seg_rd64_refined/clip_seg_rd64_refined.tar"
CLIPSEG_PROCESSOR = "https://weights.replicate.delivery/default/clip_seg_processor/clip_seg_processor.tar"
CLIPSEG_PATH = "./clipseg-cache"
CLIPSEG_PROCESSOR_PATH = "./clipseg-proc-cache"
# model is fixed to caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr
SWIN2SR_URL = "https://weights.replicate.delivery/default/swin2sr_realworld_sr_x4_64_bsrgan_psnr/swin2sr_realworld_sr_x4_64_bsrgan_psnr.tar"
SWIN2SR_PATH = "./swin2sr-cache"
TEMP_OUT_DIR = "./temp/"
TEMP_IN_DIR = "./temp_in/"
CSV_MATCH = "caption"
def preprocess(
input_images_filetype: str,
input_zip_path: Path,
caption_text: str,
mask_target_prompts: str,
target_size: int,
crop_based_on_salience: bool,
use_face_detection_instead: bool,
temp: float,
substitution_tokens: List[str],
) -> Path:
# assert str(files).endswith(".zip"), "files must be a zip file"
# clear TEMP_IN_DIR first.
for path in [TEMP_OUT_DIR, TEMP_IN_DIR]:
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
caption_csv = None
if input_images_filetype == "zip" or str(input_zip_path).endswith(".zip"):
with ZipFile(str(input_zip_path), "r") as zip_ref:
for zip_info in zip_ref.infolist():
if zip_info.filename[-1] == "/" or zip_info.filename.startswith(
"__MACOSX"
):
continue
mt = mimetypes.guess_type(zip_info.filename)
if mt and mt[0] and mt[0].startswith("image/"):
zip_info.filename = os.path.basename(zip_info.filename)
zip_ref.extract(zip_info, TEMP_IN_DIR)
if (
mt
and mt[0]
and mt[0] == "text/csv"
and CSV_MATCH in zip_info.filename
):
zip_info.filename = os.path.basename(zip_info.filename)
zip_ref.extract(zip_info, TEMP_IN_DIR)
caption_csv = os.path.join(TEMP_IN_DIR, zip_info.filename)
elif input_images_filetype == "tar" or str(input_zip_path).endswith(".tar"):
assert str(input_zip_path).endswith(
".tar"
), "files must be a tar file if not zip"
with tarfile.open(input_zip_path, "r") as tar_ref:
for tar_info in tar_ref:
if tar_info.name[-1] == "/" or tar_info.name.startswith("__MACOSX"):
continue
mt = mimetypes.guess_type(tar_info.name)
if mt and mt[0] and mt[0].startswith("image/"):
tar_info.name = os.path.basename(tar_info.name)
tar_ref.extract(tar_info, TEMP_IN_DIR)
if mt and mt[0] and mt[0] == "text/csv" and CSV_MATCH in tar_info.name:
tar_info.name = os.path.basename(tar_info.name)
tar_ref.extract(tar_info, TEMP_IN_DIR)
caption_csv = os.path.join(TEMP_IN_DIR, tar_info.name)
else:
assert False, "input_images_filetype must be zip or tar"
output_dir: str = TEMP_OUT_DIR
load_and_save_masks_and_captions(
files=TEMP_IN_DIR,
output_dir=output_dir,
caption_text=caption_text,
caption_csv=caption_csv,
mask_target_prompts=mask_target_prompts,
target_size=target_size,
crop_based_on_salience=crop_based_on_salience,
use_face_detection_instead=use_face_detection_instead,
temp=temp,
substitution_tokens=substitution_tokens,
)
return Path(TEMP_OUT_DIR)
@torch.no_grad()
@torch.cuda.amp.autocast()
def swin_ir_sr(
images: List[Image.Image],
target_size: Optional[Tuple[int, int]] = None,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
**kwargs,
) -> List[Image.Image]:
"""
Upscales images using SwinIR. Returns a list of PIL images.
If the image is already larger than the target size, it will not be upscaled
and will be returned as is.
"""
if not os.path.exists(SWIN2SR_PATH):
download_weights(SWIN2SR_URL, SWIN2SR_PATH)
model = Swin2SRForImageSuperResolution.from_pretrained(SWIN2SR_PATH).to(device)
processor = Swin2SRImageProcessor()
out_images = []
for image in tqdm(images):
ori_w, ori_h = image.size
if target_size is not None:
if ori_w >= target_size[0] and ori_h >= target_size[1]:
out_images.append(image)
continue
inputs = processor(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
output = (
outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
)
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8)
output = Image.fromarray(output)
out_images.append(output)
return out_images
@torch.no_grad()
@torch.cuda.amp.autocast()
def clipseg_mask_generator(
images: List[Image.Image],
target_prompts: Union[List[str], str],
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
bias: float = 0.01,
temp: float = 1.0,
**kwargs,
) -> List[Image.Image]:
"""
Returns a greyscale mask for each image, where the mask is the probability of the target prompt being present in the image
"""
if isinstance(target_prompts, str):
print(
f'Warning: only one target prompt "{target_prompts}" was given, so it will be used for all images'
)
target_prompts = [target_prompts] * len(images)
if not os.path.exists(CLIPSEG_PROCESSOR_PATH):
download_weights(CLIPSEG_PROCESSOR, CLIPSEG_PROCESSOR_PATH)
if not os.path.exists(CLIPSEG_PATH):
download_weights(CLIPSEG_URL, CLIPSEG_PATH)
processor = CLIPSegProcessor.from_pretrained(CLIPSEG_PROCESSOR_PATH)
model = CLIPSegForImageSegmentation.from_pretrained(CLIPSEG_PATH).to(device)
masks = []
for image, prompt in tqdm(zip(images, target_prompts)):
original_size = image.size
inputs = processor(
text=[prompt, ""],
images=[image] * 2,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(device)
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits / temp, dim=0)[0]
probs = (probs + bias).clamp_(0, 1)
probs = 255 * probs / probs.max()
# make mask greyscale
mask = Image.fromarray(probs.cpu().numpy()).convert("L")
# resize mask to original size
mask = mask.resize(original_size)
masks.append(mask)
return masks
@torch.no_grad()
def blip_captioning_dataset(
images: List[Image.Image],
text: Optional[str] = None,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
substitution_tokens: Optional[List[str]] = None,
**kwargs,
) -> List[str]:
"""
Returns a list of captions for the given images
"""
if not os.path.exists(BLIP_PROCESSOR_PATH):
download_weights(BLIP_PROCESSOR_URL, BLIP_PROCESSOR_PATH)
if not os.path.exists(BLIP_PATH):
download_weights(BLIP_URL, BLIP_PATH)
processor = BlipProcessor.from_pretrained(BLIP_PROCESSOR_PATH)
model = BlipForConditionalGeneration.from_pretrained(BLIP_PATH).to(device)
captions = []
text = text.strip()
print(f"Input captioning text: {text}")
for image in tqdm(images):
inputs = processor(image, return_tensors="pt").to("cuda")
out = model.generate(
**inputs, max_length=150, do_sample=True, top_k=50, temperature=0.7
)
caption = processor.decode(out[0], skip_special_tokens=True)
# BLIP 2 lowercases all caps tokens. This should properly replace them w/o messing up subwords. I'm sure there's a better way to do this.
for token in substitution_tokens:
print(token)
sub_cap = " " + caption + " "
print(sub_cap)
sub_cap = sub_cap.replace(" " + token.lower() + " ", " " + token + " ")
caption = sub_cap.strip()
captions.append(text + " " + caption)
print("Generated captions", captions)
return captions
def face_mask_google_mediapipe(
images: List[Image.Image], blur_amount: float = 0.0, bias: float = 50.0
) -> List[Image.Image]:
"""
Returns a list of images with masks on the face parts.
"""
mp_face_detection = mp.solutions.face_detection
mp_face_mesh = mp.solutions.face_mesh
face_detection = mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=0.1
)
face_mesh = mp_face_mesh.FaceMesh(
static_image_mode=True, max_num_faces=1, min_detection_confidence=0.1
)
masks = []
for image in tqdm(images):
image_np = np.array(image)
# Perform face detection
results_detection = face_detection.process(image_np)
ih, iw, _ = image_np.shape
if results_detection.detections:
for detection in results_detection.detections:
bboxC = detection.location_data.relative_bounding_box
bbox = (
int(bboxC.xmin * iw),
int(bboxC.ymin * ih),
int(bboxC.width * iw),
int(bboxC.height * ih),
)
# make sure bbox is within image
bbox = (
max(0, bbox[0]),
max(0, bbox[1]),
min(iw - bbox[0], bbox[2]),
min(ih - bbox[1], bbox[3]),
)
print(bbox)
# Extract face landmarks
face_landmarks = face_mesh.process(
image_np[bbox[1] : bbox[1] + bbox[3], bbox[0] : bbox[0] + bbox[2]]
).multi_face_landmarks
# https://github.com/google/mediapipe/issues/1615
# This was def helpful
indexes = [
10,
338,
297,
332,
284,
251,
389,
356,
454,
323,
361,
288,
397,
365,
379,
378,
400,
377,
152,
148,
176,
149,
150,
136,
172,
58,
132,
93,
234,
127,
162,
21,
54,
103,
67,
109,
]
if face_landmarks:
mask = Image.new("L", (iw, ih), 0)
mask_np = np.array(mask)
for face_landmark in face_landmarks:
face_landmark = [face_landmark.landmark[idx] for idx in indexes]
landmark_points = [
(int(l.x * bbox[2]) + bbox[0], int(l.y * bbox[3]) + bbox[1])
for l in face_landmark
]
mask_np = cv2.fillPoly(
mask_np, [np.array(landmark_points)], 255
)
mask = Image.fromarray(mask_np)
# Apply blur to the mask
if blur_amount > 0:
mask = mask.filter(ImageFilter.GaussianBlur(blur_amount))
# Apply bias to the mask
if bias > 0:
mask = np.array(mask)
mask = mask + bias * np.ones(mask.shape, dtype=mask.dtype)
mask = np.clip(mask, 0, 255)
mask = Image.fromarray(mask)
# Convert mask to 'L' mode (grayscale) before saving
mask = mask.convert("L")
masks.append(mask)
else:
# If face landmarks are not available, add a black mask of the same size as the image
masks.append(Image.new("L", (iw, ih), 255))
else:
print("No face detected, adding full mask")
# If no face is detected, add a white mask of the same size as the image
masks.append(Image.new("L", (iw, ih), 255))
return masks
def _crop_to_square(
image: Image.Image, com: List[Tuple[int, int]], resize_to: Optional[int] = None
):
cx, cy = com
width, height = image.size
if width > height:
left_possible = max(cx - height / 2, 0)
left = min(left_possible, width - height)
right = left + height
top = 0
bottom = height
else:
left = 0
right = width
top_possible = max(cy - width / 2, 0)
top = min(top_possible, height - width)
bottom = top + width
image = image.crop((left, top, right, bottom))
if resize_to:
image = image.resize((resize_to, resize_to), Image.Resampling.LANCZOS)
return image
def _center_of_mass(mask: Image.Image):
"""
Returns the center of mass of the mask
"""
x, y = np.meshgrid(np.arange(mask.size[0]), np.arange(mask.size[1]))
mask_np = np.array(mask) + 0.01
x_ = x * mask_np
y_ = y * mask_np
x = np.sum(x_) / np.sum(mask_np)
y = np.sum(y_) / np.sum(mask_np)
return x, y
def load_and_save_masks_and_captions(
files: Union[str, List[str]],
output_dir: str = TEMP_OUT_DIR,
caption_text: Optional[str] = None,
caption_csv: Optional[str] = None,
mask_target_prompts: Optional[Union[List[str], str]] = None,
target_size: int = 1024,
crop_based_on_salience: bool = True,
use_face_detection_instead: bool = False,
temp: float = 1.0,
n_length: int = -1,
substitution_tokens: Optional[List[str]] = None,
):
"""
Loads images from the given files, generates masks for them, and saves the masks and captions and upscale images
to output dir. If mask_target_prompts is given, it will generate kinda-segmentation-masks for the prompts and save them as well.
Example:
>>> x = load_and_save_masks_and_captions(
files="./data/images",
output_dir="./data/masks_and_captions",
caption_text="a photo of",
mask_target_prompts="cat",
target_size=768,
crop_based_on_salience=True,
use_face_detection_instead=False,
temp=1.0,
n_length=-1,
)
"""
os.makedirs(output_dir, exist_ok=True)
# load images
if isinstance(files, str):
# check if it is a directory
if os.path.isdir(files):
# get all the .png .jpg in the directory
files = (
_find_files("*.png", files)
+ _find_files("*.jpg", files)
+ _find_files("*.jpeg", files)
)
if len(files) == 0:
raise Exception(
f"No files found in {files}. Either {files} is not a directory or it does not contain any .png or .jpg/jpeg files."
)
if n_length == -1:
n_length = len(files)
files = sorted(files)[:n_length]
print("Image files: ", files)
images = [Image.open(file).convert("RGB") for file in files]
# captions
if caption_csv:
print(f"Using provided captions")
caption_df = pd.read_csv(caption_csv)
# sort images to be consistent with 'sorted' above
caption_df = caption_df.sort_values("image_file")
captions = caption_df["caption"].values
print("Captions: ", captions)
if len(captions) != len(images):
print("Not the same number of captions as images!")
print(f"Num captions: {len(captions)}, Num images: {len(images)}")
print("Captions: ", captions)
print("Images: ", files)
raise Exception(
"Not the same number of captions as images! Check that all files passed in have a caption in your caption csv, and vice versa"
)
else:
print(f"Generating {len(images)} captions...")
captions = blip_captioning_dataset(
images, text=caption_text, substitution_tokens=substitution_tokens
)
if mask_target_prompts is None:
mask_target_prompts = ""
temp = 999
print(f"Generating {len(images)} masks...")
if not use_face_detection_instead:
seg_masks = clipseg_mask_generator(
images=images, target_prompts=mask_target_prompts, temp=temp
)
else:
seg_masks = face_mask_google_mediapipe(images=images)
# find the center of mass of the mask
if crop_based_on_salience:
coms = [_center_of_mass(mask) for mask in seg_masks]
else:
coms = [(image.size[0] / 2, image.size[1] / 2) for image in images]
# based on the center of mass, crop the image to a square
images = [
_crop_to_square(image, com, resize_to=None) for image, com in zip(images, coms)
]
print(f"Upscaling {len(images)} images...")
# upscale images anyways
images = swin_ir_sr(images, target_size=(target_size, target_size))
images = [
image.resize((target_size, target_size), Image.Resampling.LANCZOS)
for image in images
]
seg_masks = [
_crop_to_square(mask, com, resize_to=target_size)
for mask, com in zip(seg_masks, coms)
]
data = []
# clean TEMP_OUT_DIR first
if os.path.exists(output_dir):
for file in os.listdir(output_dir):
os.remove(os.path.join(output_dir, file))
os.makedirs(output_dir, exist_ok=True)
# iterate through the images, masks, and captions and add a row to the dataframe for each
for idx, (image, mask, caption) in enumerate(zip(images, seg_masks, captions)):
image_name = f"{idx}.src.png"
mask_file = f"{idx}.mask.png"
# save the image and mask files
image.save(output_dir + image_name)
mask.save(output_dir + mask_file)
# add a new row to the dataframe with the file names and caption
data.append(
{"image_path": image_name, "mask_path": mask_file, "caption": caption},
)
df = pd.DataFrame(columns=["image_path", "mask_path", "caption"], data=data)
# save the dataframe to a CSV file
df.to_csv(os.path.join(output_dir, "captions.csv"), index=False)
def _find_files(pattern, dir="."):
"""Return list of files matching pattern in a given directory, in absolute format.
Unlike glob, this is case-insensitive.
"""
rule = re.compile(fnmatch.translate(pattern), re.IGNORECASE)
return [os.path.join(dir, f) for f in os.listdir(dir) if rule.match(f)]
|