--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: A photo of a man wearing headphones and a blue shirt output: url: image-0.png - text: A photo of a bald man wearing glasses and a white t - shirt output: url: image-1.png - text: A photo of a man with glasses and a beard smiles output: url: image-2.png - text: A photo of a bald man with glasses and a colorful shirt output: url: image-3.png - text: A photo of a man with glasses and a hat wearing an orange cap output: url: image-4.png - text: A photo of a man wearing glasses and a yellow hat taking a selfie output: url: image-5.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of license: openrail++ inference: parameters: num_inference_steps: 30 scheduler: EulerAncestralDiscreteScheduler --- # SDXL LoRA DreamBooth - multimodalart/poli-100-multiplier-face ## Model description ### These are multimodalart/poli-100-multiplier-face LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poli-100-multiplier-face', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poli-100-multiplier-face', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["", ""], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["", ""], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('A photo of ').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poli-100-multiplier-face/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poli-100-multiplier-face/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poli-100-multiplier-face/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.