File size: 11,234 Bytes
834d27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
language: rna
tags:
  - Biology
  - RNA
license: agpl-3.0
datasets:
  - multimolecule/rnacentral
library_name: multimolecule
pipeline_tag: fill-mask
mask_token: "<mask>"
widget:
  - example_title: "microRNA-21"
    text: "UAGC<mask>UAUCAGACUGAUGUUGA"
    output:
      - label: "<null>"
        score: 0.038491372019052505
      - label: "."
        score: 0.03848646208643913
      - label: "<pad>"
        score: 0.03846566751599312
      - label: "U"
        score: 0.03846472129225731
      - label: "W"
        score: 0.03846454620361328
---

# RNABERT

Pre-trained model on non-coding RNA (ncRNA) using masked language modeling (MLM) and structural alignment learning (SAL) objectives.

## Disclaimer

This is an UNOFFICIAL implementation of the [Informative RNA-base embedding for functional RNA clustering and structural alignment](https://doi.org/10.1093/nargab/lqac012) by Manato Akiyama and Yasubumi Sakakibara.

The OFFICIAL repository of RNABERT is at [mana438/RNABERT](https://github.com/mana438/RNABERT).

!!! Bug "Reproducibility"

    The MultiMolecule team is aware of a potential risk in reproducing the results of RNABERT.

    The original implementation of RNABERT does not prepend `<cls>` and append `<eos>` tokens to the input sequence.
    This may lead to unexpected results when using the model.

!!! Success "Reproducibility"

    The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.

**The team releasing RNABERT did not write this model card for this model so this model card has been written by the MultiMolecule team.**

## Model Details

RNABERT is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.

### Model Specification

| Num Layers | Hidden Size | Num Heads | Intermediate Size | Num Parameters (M) | FLOPs (G) | MACs (G) | Max Num Tokens |
| ---------- | ----------- | --------- | ----------------- | ------------------ | --------- | -------- | -------------- |
| 6          | 120         | 12        | 40                | 0.48               | 0.15      | 0.08     | 440            |

### Links

- **Code**: [multimolecule.rnabert](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/rnabert)
- **Weights**: [multimolecule/rnabert](https://huggingface.co/multimolecule/rnabert)
- **Data**: [RNAcentral](https://rnacentral.org)
- **Paper**: [Informative RNA-base embedding for functional RNA clustering and structural alignment](https://doi.org/10.1093/nargab/lqac012)
- **Developed by**: JManato Akiyama and Yasubumi Sakakibara
- **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased)
- **Original Repository**: [https://github.com/mana438/RNABERT](https://github.com/mana438/RNABERT)

## Usage

The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:

```bash
pip install multimolecule
```

### Direct Use

You can use this model directly with a pipeline for masked language modeling:

```python
>>> import multimolecule  # you must import multimolecule to register models
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='multimolecule/rnabert')
>>> unmasker("uagc<mask>uaucagacugauguuga")

[{'score': 0.038491372019052505,
  'token': 5,
  'token_str': '<null>',
  'sequence': 'U A G C U A U C A G A C U G A U G U U G A'},
 {'score': 0.03848646208643913,
  'token': 23,
  'token_str': '.',
  'sequence': 'U A G C. U A U C A G A C U G A U G U U G A'},
 {'score': 0.03846566751599312,
  'token': 0,
  'token_str': '<pad>',
  'sequence': 'U A G C U A U C A G A C U G A U G U U G A'},
 {'score': 0.03846472129225731,
  'token': 9,
  'token_str': 'U',
  'sequence': 'U A G C U U A U C A G A C U G A U G U U G A'},
 {'score': 0.03846454620361328,
  'token': 19,
  'token_str': 'W',
  'sequence': 'U A G C W U A U C A G A C U G A U G U U G A'}]
```

### Downstream Use

#### Extract Features

Here is how to use this model to get the features of a given sequence in PyTorch:

```python
from multimolecule import RnaTokenizer, RnaBertModel


tokenizer = RnaTokenizer.from_pretrained('multimolecule/rnabert')
model = RnaBertModel.from_pretrained('multimolecule/rnabert')

text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors='pt')

output = model(**input)
```

#### Sequence Classification / Regression

**Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.

Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:

```python
import torch
from multimolecule import RnaTokenizer, RnaBertForSequencePrediction


tokenizer = RnaTokenizer.from_pretrained('multimolecule/rnabert')
model = RnaBertForSequencePrediction.from_pretrained('multimolecule/rnabert')

text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors='pt')
label = torch.tensor([1])

output = model(**input, labels=label)
```

#### Nucleotide Classification / Regression

**Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for nucleotide classification or regression.

Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:

```python
import torch
from multimolecule import RnaTokenizer, RnaBertForNucleotidePrediction


tokenizer = RnaTokenizer.from_pretrained('multimolecule/rnabert')
model = RnaBertForNucleotidePrediction.from_pretrained('multimolecule/rnabert')

text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors='pt')
label = torch.randint(2, (len(text), ))

output = model(**input, labels=label)
```

#### Contact Classification / Regression

**Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.

Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:

```python
import torch
from multimolecule import RnaTokenizer, RnaBertForContactPrediction


tokenizer = RnaTokenizer.from_pretrained('multimolecule/rnabert')
model = RnaBertForContactPrediction.from_pretrained('multimolecule/rnabert')

text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors='pt')
label = torch.randint(2, (len(text), len(text)))

output = model(**input, labels=label)
```

## Training Details

RNABERT has two pre-training objectives: masked language modeling (MLM) and structural alignment learning (SAL).

- **Masked Language Modeling (MLM)**: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
- **Structural Alignment Learning (SAL)**: the model learns to predict the structural alignment of two RNA sequences. The model is trained to predict the alignment score of two RNA sequences using the Needleman-Wunsch algorithm.

### Training Data

The RNABERT model was pre-trained on [RNAcentral](https://rnacentral.org). RNAcentral is a comprehensive database of non-coding RNA sequences from a wide range of species. It combines 47 different databases, adding up to around 27 million RNA sequences in total. RNABERT used a subset of 76, 237 human ncRNA sequences from RNAcentral for pre-training.

RNABERT preprocessed all tokens by replacing "U"s with "T"s.

Note that during model conversions, "T" is replaced with "U". [`RnaTokenizer`][multimolecule.RnaTokenizer] will convert "T"s to "U"s for you, you may disable this behaviour by passing `replace_T_with_U=False`.

### Training Procedure

#### Preprocessing

RNABERT preprocess the dataset by applying 10 different mask patterns to the 72, 237 human ncRNA sequences. The final dataset contains 722, 370 sequences. The masking procedure is similar to the one used in BERT:

- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.

#### PreTraining

The model was trained on 1 NVIDIA V100 GPU.

## Citation

**BibTeX**:

```bibtex
@article{akiyama2022informative,
    author = {Akiyama, Manato and Sakakibara, Yasubumi},
    title = "{Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning}",
    journal = {NAR Genomics and Bioinformatics},
    volume = {4},
    number = {1},
    pages = {lqac012},
    year = {2022},
    month = {02},
    abstract = "{Effective embedding is actively conducted by applying deep learning to biomolecular information. Obtaining better embeddings enhances the quality of downstream analyses, such as DNA sequence motif detection and protein function prediction. In this study, we adopt a pre-training algorithm for the effective embedding of RNA bases to acquire semantically rich representations and apply this algorithm to two fundamental RNA sequence problems: structural alignment and clustering. By using the pre-training algorithm to embed the four bases of RNA in a position-dependent manner using a large number of RNA sequences from various RNA families, a context-sensitive embedding representation is obtained. As a result, not only base information but also secondary structure and context information of RNA sequences are embedded for each base. We call this ‘informative base embedding’ and use it to achieve accuracies superior to those of existing state-of-the-art methods on RNA structural alignment and RNA family clustering tasks. Furthermore, upon performing RNA sequence alignment by combining this informative base embedding with a simple Needleman–Wunsch alignment algorithm, we succeed in calculating structural alignments with a time complexity of O(n2) instead of the O(n6) time complexity of the naive implementation of Sankoff-style algorithm for input RNA sequence of length n.}",
    issn = {2631-9268},
    doi = {10.1093/nargab/lqac012},
    url = {https://doi.org/10.1093/nargab/lqac012},
    eprint = {https://academic.oup.com/nargab/article-pdf/4/1/lqac012/42577168/lqac012.pdf},
}
```

## Contact

Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.

Please contact the authors of the [RNABERT paper](https://doi.org/10.1093/nargab/lqac012) for questions or comments on the paper/model.

## License

This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).

```spdx
SPDX-License-Identifier: AGPL-3.0-or-later
```