Update README.md
Browse files
README.md
CHANGED
@@ -73,9 +73,10 @@ Muskrat (Ondatra zibethicus), Brown Rat (Rattus norvegicus), House Mouse (Mus mu
|
|
73 |
Cotton Rat (Sigmodon hispidus), Meadow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glareolus), Deer Mouse
|
74 |
(Peromyscus maniculatus), White-footed Mouse (Peromyscus leucopus), Striped Field Mouse (Apodemus agrarius). We then
|
75 |
generated segmentation masks over target animals in the data by processing the media through an algorithm we designed that
|
76 |
-
uses a Mask Region Based Convolutional Neural Networks(Mask R-CNN) (
|
77 |
-
pretrained on the COCO datasets (
|
78 |
segmentation masks. iRodent data is banked at https://zenodo.org/record/8250392.
|
|
|
79 |
|
80 |
Here is an image with the keypoint guide:
|
81 |
<p align="center">
|
@@ -153,4 +154,6 @@ Conference on Neural Information Processing Systems Datasets and Benchmarks Trac
|
|
153 |
vision, pages 2961–2969, 2017.
|
154 |
10. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection, 2016.
|
155 |
11. Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’ar,
|
156 |
-
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014
|
|
|
|
|
|
73 |
Cotton Rat (Sigmodon hispidus), Meadow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glareolus), Deer Mouse
|
74 |
(Peromyscus maniculatus), White-footed Mouse (Peromyscus leucopus), Striped Field Mouse (Apodemus agrarius). We then
|
75 |
generated segmentation masks over target animals in the data by processing the media through an algorithm we designed that
|
76 |
+
uses a Mask Region Based Convolutional Neural Networks(Mask R-CNN) (9) model with a ResNet-50-FPN backbone (10),
|
77 |
+
pretrained on the COCO datasets (11). The processed 443 images were then manually labeled with both pose annotations and
|
78 |
segmentation masks. iRodent data is banked at https://zenodo.org/record/8250392.
|
79 |
+
**APT-36K** See full details at (12).
|
80 |
|
81 |
Here is an image with the keypoint guide:
|
82 |
<p align="center">
|
|
|
154 |
vision, pages 2961–2969, 2017.
|
155 |
10. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection, 2016.
|
156 |
11. Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’ar,
|
157 |
+
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014
|
158 |
+
12. Yuxiang Yang, Junjie Yang, Yufei Xu, Jing Zhang, Long Lan, and Dacheng Tao. Apt-36k: A large-scale benchmark for animal pose estimation and
|
159 |
+
tracking. Advances in Neural Information Processing Systems, 35:17301–17313, 2022
|