mwmathis commited on
Commit
088d7d0
1 Parent(s): 10c33d0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -73,9 +73,10 @@ Muskrat (Ondatra zibethicus), Brown Rat (Rattus norvegicus), House Mouse (Mus mu
73
  Cotton Rat (Sigmodon hispidus), Meadow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glareolus), Deer Mouse
74
  (Peromyscus maniculatus), White-footed Mouse (Peromyscus leucopus), Striped Field Mouse (Apodemus agrarius). We then
75
  generated segmentation masks over target animals in the data by processing the media through an algorithm we designed that
76
- uses a Mask Region Based Convolutional Neural Networks(Mask R-CNN) (8) model with a ResNet-50-FPN backbone (9),
77
- pretrained on the COCO datasets (10). The processed 443 images were then manually labeled with both pose annotations and
78
  segmentation masks. iRodent data is banked at https://zenodo.org/record/8250392.
 
79
 
80
  Here is an image with the keypoint guide:
81
  <p align="center">
@@ -153,4 +154,6 @@ Conference on Neural Information Processing Systems Datasets and Benchmarks Trac
153
  vision, pages 2961–2969, 2017.
154
  10. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection, 2016.
155
  11. Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’ar,
156
- and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014
 
 
 
73
  Cotton Rat (Sigmodon hispidus), Meadow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glareolus), Deer Mouse
74
  (Peromyscus maniculatus), White-footed Mouse (Peromyscus leucopus), Striped Field Mouse (Apodemus agrarius). We then
75
  generated segmentation masks over target animals in the data by processing the media through an algorithm we designed that
76
+ uses a Mask Region Based Convolutional Neural Networks(Mask R-CNN) (9) model with a ResNet-50-FPN backbone (10),
77
+ pretrained on the COCO datasets (11). The processed 443 images were then manually labeled with both pose annotations and
78
  segmentation masks. iRodent data is banked at https://zenodo.org/record/8250392.
79
+ **APT-36K** See full details at (12).
80
 
81
  Here is an image with the keypoint guide:
82
  <p align="center">
 
154
  vision, pages 2961–2969, 2017.
155
  10. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection, 2016.
156
  11. Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’ar,
157
+ and C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014
158
+ 12. Yuxiang Yang, Junjie Yang, Yufei Xu, Jing Zhang, Long Lan, and Dacheng Tao. Apt-36k: A large-scale benchmark for animal pose estimation and
159
+ tracking. Advances in Neural Information Processing Systems, 35:17301–17313, 2022