mwritescode
commited on
Commit
·
6edaa8b
1
Parent(s):
e12246b
Upload model
Browse files- config.json +52 -0
- generation_config.json +7 -0
- gpt2.py +209 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2PrefixTuningWithLMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "gpt2.GPT2PrefixTuningConfig",
|
9 |
+
"AutoModelForCausalLM": "gpt2.GPT2PrefixTuningWithLMHeadModel"
|
10 |
+
},
|
11 |
+
"bos_token_id": 50256,
|
12 |
+
"embd_pdrop": 0.1,
|
13 |
+
"eos_token_id": 50256,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"is_flat": false,
|
16 |
+
"layer_norm_epsilon": 1e-05,
|
17 |
+
"model_type": "gpt2",
|
18 |
+
"n_ctx": 1024,
|
19 |
+
"n_embd": 1024,
|
20 |
+
"n_head": 16,
|
21 |
+
"n_inner": null,
|
22 |
+
"n_layer": 24,
|
23 |
+
"n_positions": 1024,
|
24 |
+
"n_special": 0,
|
25 |
+
"objective_type": "sentence",
|
26 |
+
"pad_token_id": 50257,
|
27 |
+
"plm_name_or_path": "gpt2-medium",
|
28 |
+
"predict_special_tokens": true,
|
29 |
+
"prefix_dropout_prob": 0.0,
|
30 |
+
"prefix_hidden_size": 512,
|
31 |
+
"prefix_len": 5,
|
32 |
+
"reorder_and_upcast_attn": false,
|
33 |
+
"resid_pdrop": 0.1,
|
34 |
+
"scale_attn_by_inverse_layer_idx": false,
|
35 |
+
"scale_attn_weights": true,
|
36 |
+
"summary_activation": null,
|
37 |
+
"summary_first_dropout": 0.1,
|
38 |
+
"summary_proj_to_labels": true,
|
39 |
+
"summary_type": "cls_index",
|
40 |
+
"summary_use_proj": true,
|
41 |
+
"task_specific_params": {
|
42 |
+
"text-generation": {
|
43 |
+
"do_sample": true,
|
44 |
+
"max_length": 50
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"transformers_version": "4.26.0",
|
49 |
+
"use_cache": true,
|
50 |
+
"use_layer_dep": false,
|
51 |
+
"vocab_size": 50258
|
52 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"pad_token_id": 50257,
|
6 |
+
"transformers_version": "4.26.0"
|
7 |
+
}
|
gpt2.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import PretrainedConfig, AutoConfig
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
5 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2PreTrainedModel, GPT2LMHeadModel
|
6 |
+
|
7 |
+
from src.utils.prefix import PrefixEncoder
|
8 |
+
|
9 |
+
class GPT2PrefixTuningConfig(PretrainedConfig):
|
10 |
+
attribute_map = {
|
11 |
+
"hidden_size": "n_embd",
|
12 |
+
"max_position_embeddings": "n_positions",
|
13 |
+
"num_attention_heads": "n_head",
|
14 |
+
"num_hidden_layers": "n_layer",
|
15 |
+
}
|
16 |
+
model_type = "gpt2"
|
17 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
18 |
+
|
19 |
+
def __init__(self,
|
20 |
+
plm_name_or_path='gpt2-medium',
|
21 |
+
prefix_len=5,
|
22 |
+
prefix_dropout_prob=0.0,
|
23 |
+
prefix_hidden_size=512,
|
24 |
+
is_flat=False,
|
25 |
+
pad_token_id=50257,
|
26 |
+
objective_type='sentence',
|
27 |
+
use_layer_dep=False,
|
28 |
+
**kwargs):
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
self.plm_name_or_path = plm_name_or_path
|
31 |
+
self.prefix_len = prefix_len
|
32 |
+
self.prefix_dropout_prob = prefix_dropout_prob
|
33 |
+
self.prefix_hidden_size = prefix_hidden_size
|
34 |
+
self.is_flat = is_flat
|
35 |
+
plm_config = AutoConfig.from_pretrained(plm_name_or_path).to_dict()
|
36 |
+
del plm_config['_name_or_path']
|
37 |
+
self.update(plm_config)
|
38 |
+
self.pad_token_id = pad_token_id
|
39 |
+
self.vocab_size = self.pad_token_id + 1
|
40 |
+
self.objective_type = objective_type # or 'sentence' or 'token' which is the classical objective
|
41 |
+
self.use_layer_dep = use_layer_dep
|
42 |
+
|
43 |
+
class GPT2PrefixTuningWithLMHeadModel(GPT2PreTrainedModel):
|
44 |
+
def __init__(self, config, pretrained_model=None):
|
45 |
+
super().__init__(config)
|
46 |
+
print(config)
|
47 |
+
if pretrained_model is None:
|
48 |
+
self.pretrained_model = GPT2LMHeadModel.from_pretrained(config.plm_name_or_path, pad_token_id=config.pad_token_id)
|
49 |
+
self.pretrained_model.resize_token_embeddings(config.vocab_size)
|
50 |
+
else:
|
51 |
+
self.pretrained_model = pretrained_model
|
52 |
+
|
53 |
+
for param in self.pretrained_model.parameters():
|
54 |
+
param.requires_grad = False
|
55 |
+
|
56 |
+
self.prefix_len = config.prefix_len
|
57 |
+
self.prefix_encoder = PrefixEncoder(config)
|
58 |
+
|
59 |
+
def train(self, mode=True):
|
60 |
+
super().train(mode)
|
61 |
+
self.pretrained_model.eval()
|
62 |
+
|
63 |
+
def get_input_embeddings(self) -> nn.Module:
|
64 |
+
return self.pretrained_model.get_input_embeddings()
|
65 |
+
|
66 |
+
def get_output_embeddings(self):
|
67 |
+
return self.pretrained_model.lm_head
|
68 |
+
|
69 |
+
def set_output_embeddings(self, new_embeddings):
|
70 |
+
self.pretrained_model.set_output_embeddings(new_embeddings=new_embeddings)
|
71 |
+
|
72 |
+
def get_input_embeddings(self):
|
73 |
+
return self.pretrained_model.get_input_embeddings()
|
74 |
+
|
75 |
+
def set_input_embeddings(self, new_embeddings):
|
76 |
+
self.pretrained_model.set_input_embeddings(new_embeddings=new_embeddings)
|
77 |
+
|
78 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
79 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
80 |
+
|
81 |
+
# only last token for inputs_ids if past is defined in kwargs
|
82 |
+
if past_key_values:
|
83 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
84 |
+
if token_type_ids is not None:
|
85 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
86 |
+
|
87 |
+
batch_size = input_ids.shape[0]
|
88 |
+
attention_mask = kwargs.get("attention_mask", None)
|
89 |
+
position_ids = kwargs.get("position_ids", None)
|
90 |
+
|
91 |
+
if attention_mask is not None:
|
92 |
+
prefix_attention_mask = torch.ones(batch_size, self.prefix_len).to(input_ids.device)
|
93 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
94 |
+
|
95 |
+
if attention_mask is not None and position_ids is None:
|
96 |
+
# create position_ids on the fly for batch generation
|
97 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
98 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
99 |
+
if past_key_values:
|
100 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
101 |
+
else:
|
102 |
+
position_ids = None
|
103 |
+
|
104 |
+
if past_key_values is None:
|
105 |
+
past_key_values = self.prefix_encoder(batch_size=batch_size)
|
106 |
+
if position_ids is not None:
|
107 |
+
position_ids = position_ids[:, self.prefix_len:]
|
108 |
+
|
109 |
+
return {
|
110 |
+
"input_ids": input_ids,
|
111 |
+
"past_key_values": past_key_values,
|
112 |
+
"use_cache": kwargs.get("use_cache"),
|
113 |
+
"position_ids": position_ids,
|
114 |
+
"attention_mask": attention_mask,
|
115 |
+
"token_type_ids": token_type_ids,
|
116 |
+
}
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self,
|
120 |
+
input_ids,
|
121 |
+
past_key_values=None,
|
122 |
+
attention_mask=None,
|
123 |
+
token_type_ids=None,
|
124 |
+
position_ids=None,
|
125 |
+
head_mask=None,
|
126 |
+
inputs_embeds=None,
|
127 |
+
encoder_hidden_states=None,
|
128 |
+
encoder_attention_mask=None,
|
129 |
+
labels=None,
|
130 |
+
use_cache=None,
|
131 |
+
output_attentions=None,
|
132 |
+
output_hidden_states=None,
|
133 |
+
return_dict=None,
|
134 |
+
):
|
135 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
136 |
+
|
137 |
+
if past_key_values is not None and self.training:
|
138 |
+
raise ValueError("past_key_value is dedicated to prefix tokens in this implementation. Please don't use it for anything else.")
|
139 |
+
|
140 |
+
if past_key_values is None:
|
141 |
+
batch_size = input_ids.shape[0]
|
142 |
+
past_key_values = self.prefix_encoder(batch_size=batch_size)
|
143 |
+
if attention_mask is not None:
|
144 |
+
prefix_attention_mask = torch.ones(batch_size, self.prefix_len).to(input_ids.device)
|
145 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
|
146 |
+
|
147 |
+
labels_for_plm = None if self.config.objective_type == 'sentence' else labels
|
148 |
+
|
149 |
+
position_ids = None if not self.training and input_ids.shape[1] == 1 else position_ids
|
150 |
+
if position_ids is not None:
|
151 |
+
position_ids = position_ids.contiguous()
|
152 |
+
|
153 |
+
transformer_outputs = self.pretrained_model(
|
154 |
+
input_ids,
|
155 |
+
past_key_values=past_key_values,
|
156 |
+
attention_mask=attention_mask,
|
157 |
+
token_type_ids=token_type_ids,
|
158 |
+
position_ids=position_ids,
|
159 |
+
head_mask=head_mask,
|
160 |
+
inputs_embeds=inputs_embeds,
|
161 |
+
encoder_hidden_states=encoder_hidden_states,
|
162 |
+
encoder_attention_mask=encoder_attention_mask,
|
163 |
+
labels=labels_for_plm,
|
164 |
+
use_cache=use_cache,
|
165 |
+
output_attentions=output_attentions,
|
166 |
+
output_hidden_states=output_hidden_states,
|
167 |
+
return_dict=return_dict,
|
168 |
+
)
|
169 |
+
|
170 |
+
if labels_for_plm is None:
|
171 |
+
lm_logits = transformer_outputs.logits if return_dict else transformer_outputs[0]
|
172 |
+
|
173 |
+
loss = None
|
174 |
+
if labels is not None:
|
175 |
+
# Shift so that tokens < n predict n
|
176 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
177 |
+
shift_labels = labels[..., 1:].contiguous()
|
178 |
+
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
179 |
+
batch_size, seqlen, _ = shift_logits.shape
|
180 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
181 |
+
loss = loss.view(batch_size, seqlen).sum(dim=-1)
|
182 |
+
loss = loss.mean()
|
183 |
+
|
184 |
+
if not return_dict:
|
185 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
186 |
+
return ((loss,) + output) if loss is not None else output
|
187 |
+
|
188 |
+
return CausalLMOutputWithCrossAttentions(
|
189 |
+
loss=loss,
|
190 |
+
logits=lm_logits,
|
191 |
+
past_key_values=transformer_outputs.past_key_values,
|
192 |
+
hidden_states=transformer_outputs.hidden_states,
|
193 |
+
attentions=transformer_outputs.attentions,
|
194 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
return transformer_outputs
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def _reorder_cache(past, beam_idx):
|
201 |
+
"""
|
202 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
203 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
204 |
+
beam_idx at every generation step.
|
205 |
+
"""
|
206 |
+
return tuple(
|
207 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
208 |
+
for layer_past in past
|
209 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecf2cdfb5b0a3726e5eebf5461a65ba9adc54ae6ca427a918f7dda0624d6c3ec
|
3 |
+
size 1547553167
|