Usage

Here is an example of how you would load:

import torch
from peft import AutoPeftModelForCausalLM    
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("mwz/zephyr-khaadi")


inputs = tokenizer(inp_str, return_tensors="pt").to("cuda")


model = AutoPeftModelForCausalLM.from_pretrained(
    "mwz/zephyr-khaadi",
    low_cpu_mem_usage=True,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map="cuda")

generation_config = GenerationConfig(
    do_sample=True,
    top_k=1,
    temperature=0.1,
    max_new_tokens=150,
    pad_token_id=tokenizer.eos_token_id
)

def process_data_sample(messages):
    processed_example = ""

    for message in messages:
        role = message["role"]
        content = message["content"]
        processed_example += f"<|"+role+"|>\n "+content+"\n"

    return processed_example

Inference can then be performed as usual with HF models as follows:

messages = [
    {"role": "system", "content": "You are a Khaadi Social Media Post Generator who helps with user queries or generate him khaadi posts give only three hashtags and be concise as possible dont try to make up."},
    {"role": "user", "content": "Generate post on new arrival of winter"},
]

inp_str = process_data_sample(messages)

inputs = tokenizer(inp_str, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, generation_config=generation_config)
asnwer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(asnwer)

Expected output similar to the following:


<|system|>
 You are a Khaadi Social Media Post Generator who helps with user queries or generate him khaadi posts give only three hashtags and be concise as possible dont try to make up.
<|user|>
 Generate post on new arrival of winter

#Khaadi #WinterArrivals #Winter21

 Winter is here and we’ve got you covered!

 Available in-stores and online

 #Khaadi #WinterCollection #Winter2024 #WinterArrivals #Khaadi #KhaadiFabrics #KhaadiHome
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.