from handler import EndpointHandler import json # init handler my_handler = EndpointHandler(path=".") import base64 # prepare sample payload # non_holiday_payload = {"inputs": "I am quite excited how this will turn out", "date": "2022-08-08"} # holiday_payload = {"inputs": "Today is a though day", "date": "2022-07-04"} # with open('sample_input.json', 'r') as file: # data = json.load(file) import io from PIL import Image import requests response = requests.get('https://mystore-12345-product-images.s3-us-east-2.amazonaws.com/0c817b58-2774-4f02-95b8-3ae379aa2e98.jpeg') image = Image.open(io.BytesIO(response.content)).convert('RGB') response2 = requests.get('https://mystore-12345-product-images.s3-us-east-2.amazonaws.com/3b9c698b-b7ae-4c5d-a978-2179ccc08d12.jpeg') image2 = Image.open(io.BytesIO(response2.content)).convert('RGB') response3 = requests.get('https://mystore-12345-product-images.s3-us-east-2.amazonaws.com/72801dfa-5d6a-442e-91cd-80bdb394a323.jpeg') image3 = Image.open(io.BytesIO(response3.content)).convert('RGB') pil_images = [image.copy() for i in range(10)] pil_images[1] = image2.copy() pil_images[2] = image3.copy() base64_strings = [] for output_image in pil_images: buffered = io.BytesIO() output_image = output_image.convert('RGB') output_image.save(buffered, format="png") img_str = base64.b64encode(buffered.getvalue()) base64_strings.append(img_str) inputs = { 'image': base64_strings } # test the handler import time start = time.time() prediction=my_handler(inputs) # holiday_payload=my_handler(holiday_payload) print("inference time itself is", time.time() - start) # show results # print("prediction", prediction) print("type of prediction", type(prediction)) data_json = prediction print("type of prediction", data_json.keys()) img_str = data_json['image']