File size: 2,835 Bytes
9fef58f
 
 
 
 
 
 
 
b99257c
9fef58f
 
 
 
 
b99257c
9fef58f
 
 
 
 
 
 
b99257c
9fef58f
b99257c
9fef58f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- pearsonr
base_model: klue/bert-base
model-index:
- name: bert-base-finetuned-sts-v3
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: klue
      type: klue
      config: sts
      split: train
      args: sts
    metrics:
    - type: pearsonr
      value: 0.9172194083849969
      name: Pearsonr
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-finetuned-sts-v3

This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3716
- Pearsonr: 0.9172

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Pearsonr |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2265        | 1.0   | 2917  | 0.4886          | 0.8933   |
| 0.1504        | 2.0   | 5834  | 0.4374          | 0.8948   |
| 0.0982        | 3.0   | 8751  | 0.5246          | 0.8957   |
| 0.0832        | 4.0   | 11668 | 0.4387          | 0.9006   |
| 0.0751        | 5.0   | 14585 | 0.4036          | 0.9049   |
| 0.0564        | 6.0   | 17502 | 0.3828          | 0.9133   |
| 0.0488        | 7.0   | 20419 | 0.3716          | 0.9172   |
| 0.0384        | 8.0   | 23336 | 0.4060          | 0.9093   |
| 0.0365        | 9.0   | 26253 | 0.3939          | 0.9065   |
| 0.0319        | 10.0  | 29170 | 0.3953          | 0.9106   |
| 0.0262        | 11.0  | 32087 | 0.3885          | 0.9109   |
| 0.0219        | 12.0  | 35004 | 0.3724          | 0.9154   |
| 0.0188        | 13.0  | 37921 | 0.3827          | 0.9111   |
| 0.0175        | 14.0  | 40838 | 0.4103          | 0.9099   |
| 0.0144        | 15.0  | 43755 | 0.3768          | 0.9152   |
| 0.0132        | 16.0  | 46672 | 0.3868          | 0.9151   |
| 0.0125        | 17.0  | 49589 | 0.3981          | 0.9103   |
| 0.0106        | 18.0  | 52506 | 0.3808          | 0.9138   |
| 0.0095        | 19.0  | 55423 | 0.3904          | 0.9128   |
| 0.0089        | 20.0  | 58340 | 0.3885          | 0.9137   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.13.2