File size: 1,415 Bytes
e09405c c7595dd e09405c 2bda237 f084f4b 4861d83 e09405c aee59a4 e09405c 5a1ac7c e09405c 3161622 e09405c a3cd426 e09405c a3cd426 e09405c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
base_model: google/paligemma-3b-pt-224
library_name: peft
license: gemma
tags:
- generated_from_trainer
model-index:
- name: paligemma_VQAv2_ko
results: []
pipeline_tag: visual-question-answering
datasets:
- HuggingFaceM4/VQAv2
language:
- ko
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# paligemma_VQAv2_ko
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on an korean VQAv2 dataset.(HuggingFaceM4/VQAv2)
ds = load_dataset('HuggingFaceM4/VQAv2', split="train[:100%]",cache_dir=root_path+'dataset/')
## Model description
This model was finetuned using VQAv2 datasets translated into KOREAN.
## Intended uses & limitations
Nothing
## Training and evaluation data
Nothing
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
### Framework versions
- PEFT 0.8.2
- Transformers 4.45.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |