nanashisan
commited on
Commit
•
6ad3005
1
Parent(s):
2af2e3c
Upload kohya_SD_PaperSpace.ipynb
Browse files- kohya_SD_PaperSpace.ipynb +621 -0
kohya_SD_PaperSpace.ipynb
ADDED
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "cd47645b-3a64-433e-89a0-25fa30217a2c",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## 説明"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "06077106-1f0b-406e-8c82-fb127574bebe",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"Dreambooth-Loraの学習をPeperspaceで動かす為のNotebook \n",
|
17 |
+
"本家sd-scripts(https://github.com/kohya-ss/sd-scripts) \n",
|
18 |
+
"\n",
|
19 |
+
"以下ソースを参考に作成してるで。 \n",
|
20 |
+
"sd-scripts(https://github.com/kohya-ss/sd-scripts) \n",
|
21 |
+
"colab用kohya-trainer(https://github.com/Linaqruf/kohya-trainer) \n",
|
22 |
+
"Peperspace用webui(https://github.com/Engineer-of-Stuff/stable-diffusion-paperspace) \n",
|
23 |
+
"\n",
|
24 |
+
"学習素材と正規化画像はあらかじめstorageかtmpにアップしてな。 \n",
|
25 |
+
"永続Storageがある事と一部ターミナル使う前提になってるから無課金では動かんかもしれんで "
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"id": "b07c14b6-b67f-41f3-9a1b-02730b32becf",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"<span style=\"color: red\">既知の不具合</span> \n",
|
34 |
+
"学習実行時に以下の警告メッセージが表示されるで \n",
|
35 |
+
"解決策わかったら教えてください \n",
|
36 |
+
"- 「--use_8bit_adam 」を有効にすると別パッケージから参照の警告メッセージが表示される。(多分bitsandbytesのパスがおかしい) \n",
|
37 |
+
"- 「Could not load dynamic library 'libnvinfer_plugin.so.7';」の警告メッセージが表示される。(libnvinfer_plugin.so.7がpython3.9に無い?) \n",
|
38 |
+
"- 「Unable to register cuBLAS factory 」の警告メッセージが表示される。(xpaformer入れる為にcudnnのバージョン下げてるのが怪しい) \n"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "4eb1d725-e55c-41e9-8574-da6dfb641ff0",
|
44 |
+
"metadata": {
|
45 |
+
"tags": []
|
46 |
+
},
|
47 |
+
"source": [
|
48 |
+
"## 1.SETTING"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"id": "d33d8e53-af14-4033-9ba2-0c4044541763",
|
54 |
+
"metadata": {
|
55 |
+
"tags": []
|
56 |
+
},
|
57 |
+
"source": [
|
58 |
+
"# 1-0 設定値保存\n",
|
59 |
+
"仮想マシン起動時毎回実行する"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": null,
|
65 |
+
"id": "e90d2a8f-f497-421d-9a7e-3921caff41c4",
|
66 |
+
"metadata": {
|
67 |
+
"tags": []
|
68 |
+
},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"#リポジトリ 永続ストレー、一時領域ジシンボリックリンク作成\n",
|
72 |
+
"repo_dir = '/notebooks' \n",
|
73 |
+
"!ln -s /storage/ /notebooks/\n",
|
74 |
+
"!ln -s /tmp/ /notebooks/\n",
|
75 |
+
"\n",
|
76 |
+
"#その他設定値\n",
|
77 |
+
"activate_xformers = True # Enables the xformers optimizations using pre-built wheels.\n",
|
78 |
+
"\n",
|
79 |
+
"%store repo_dir activate_xformers"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "markdown",
|
84 |
+
"id": "8f1b1a2f-d1ab-4b84-87dc-c83190bf506d",
|
85 |
+
"metadata": {
|
86 |
+
"tags": []
|
87 |
+
},
|
88 |
+
"source": [
|
89 |
+
"# 1-1.Git Clone\n",
|
90 |
+
"導入時 更新時"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"id": "114fc353-213a-4d91-afce-f733ba5a9de2",
|
97 |
+
"metadata": {
|
98 |
+
"tags": []
|
99 |
+
},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"%cd {repo_dir}\n",
|
103 |
+
"\n",
|
104 |
+
"import os\n",
|
105 |
+
"\n",
|
106 |
+
"def clone_kohya_sd_scripts():\n",
|
107 |
+
" # Check if the directory already exists\n",
|
108 |
+
" if os.path.isdir('/notebooks/sd-scripts'):\n",
|
109 |
+
" %cd /notebooks/sd-scripts\n",
|
110 |
+
" print(\"This folder already exists, will do a !git pull instead\\n\")\n",
|
111 |
+
" !git pull\n",
|
112 |
+
" else:\n",
|
113 |
+
" !git clone https://github.com/kohya-ss/sd-scripts\n",
|
114 |
+
"\n",
|
115 |
+
"# Clone or update the Kohya Trainer repository\n",
|
116 |
+
"clone_kohya_sd_scripts()"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"id": "b52dd301-0ed2-4ae4-911e-643d39c0f1bf",
|
122 |
+
"metadata": {
|
123 |
+
"tags": []
|
124 |
+
},
|
125 |
+
"source": [
|
126 |
+
"# 1-2.Install and Setting\n",
|
127 |
+
"仮想マシン起動時毎回実行する"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"id": "85954927-9497-4a2c-995a-dc4e6ba4b16c",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"%store -r repo_dir activate_xformers\n",
|
138 |
+
"\n",
|
139 |
+
"appDir = f'{repo_dir}/sd-scripts'\n",
|
140 |
+
"%cd {appDir}\n",
|
141 |
+
"\n",
|
142 |
+
"!pip install --upgrade pip\n",
|
143 |
+
"!pip install --upgrade -r requirements.txt\n",
|
144 |
+
"!pip uninstall -y torch torchvision torchaudio # Remove existing pytorch install.\n",
|
145 |
+
"!pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 # Install pytorch for cuda 11.3\n",
|
146 |
+
"\n",
|
147 |
+
"import os\n",
|
148 |
+
"if activate_xformers:\n",
|
149 |
+
" print('Installing xformers...')\n",
|
150 |
+
" import subprocess\n",
|
151 |
+
" def download_release(url):\n",
|
152 |
+
" binary = 'xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl' # have to save the binary as a specific name that pip likes\n",
|
153 |
+
" tmp_dir = subprocess.check_output(['mktemp', '-d']).decode('ascii').strip('\\n')\n",
|
154 |
+
" !wget \"{url}\" -O \"{tmp_dir}/{binary}\"\n",
|
155 |
+
" return os.path.join(tmp_dir, binary)\n",
|
156 |
+
"\n",
|
157 |
+
" # Set up pip packages\n",
|
158 |
+
" s = subprocess.getoutput('nvidia-smi')\n",
|
159 |
+
" if 'A4000' in s:\n",
|
160 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A4000-Oct-28-2022/a4000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
161 |
+
" elif 'A5000' in s:\n",
|
162 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A5000-Nov-1-2022/a5000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
163 |
+
" elif 'A6000' in s:\n",
|
164 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A6000-Nov-1-2022/a6000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
165 |
+
" elif 'P5000' in s:\n",
|
166 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/P5000-Nov-1-2022/p5000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
167 |
+
" elif 'RTX 4000' in s:\n",
|
168 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/RTX-4000-Nov-1-2022/rtx4000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
169 |
+
" elif 'RTX 5000' in s:\n",
|
170 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/RTX-5000-Nov-1-2022/rtx5000-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
171 |
+
" elif 'A100' in s:\n",
|
172 |
+
" xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A100-Nov-1-2022/a100-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
173 |
+
" elif 'M4000' in s:\n",
|
174 |
+
" print('xformers for M4000 hasn\\'t been built yet.')\n",
|
175 |
+
" # xformers_whl = download_release('https://github.com/Cyberes/xformers-compiled/releases/download/A100-Nov-1-2022/a100-xformers-0.0.14.dev0-cp39-cp39-linux_x86_64.whl')\n",
|
176 |
+
" else:\n",
|
177 |
+
" print('GPU not matched to xformers binary so a one-size-fits-all binary was installed. If you have any issues, please build xformers using the Tools block below.')\n",
|
178 |
+
" xformers_whl = download_release('https://raw.githubusercontent.com/Cyberes/xformers-compiled/main/various/xformers-0.0.14.dev0-cp37-cp37m-linux_x86_64.whl')\n",
|
179 |
+
" !pip install --force-reinstall \"{xformers_whl}\""
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "markdown",
|
184 |
+
"id": "7076d849-dd45-491d-9e6c-473ed1bdbc6e",
|
185 |
+
"metadata": {
|
186 |
+
"tags": []
|
187 |
+
},
|
188 |
+
"source": [
|
189 |
+
"# 1-3.Accelerate config作成 \n",
|
190 |
+
"導入時初回のみターミナルから実行する。 \n",
|
191 |
+
"対話型で選択肢に回答する形式なのでターミナルから実行 \n",
|
192 |
+
" cd /notebooks/sd-scripts \n",
|
193 |
+
" accelerate config \n",
|
194 |
+
"質問回答後下記メッセージが出たら完了 \n",
|
195 |
+
"accelerate configuration saved at /root/.cache/huggingface/accelerate/default_config.yaml "
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "markdown",
|
200 |
+
"id": "bf57b0ce-882c-415c-9d80-a923a7026124",
|
201 |
+
"metadata": {
|
202 |
+
"tags": []
|
203 |
+
},
|
204 |
+
"source": [
|
205 |
+
"# 1-4.accelerate configファイルをsd-scriptsディレクトリにコピーする\n",
|
206 |
+
"導入時初回のみ実行する \n",
|
207 |
+
"1.3で作ったコンフィグファイルを永続ストレージにコピーする"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"id": "9bbd243b-75d3-4492-9bac-196faf55ee97",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"!cp -r /root/.cache/huggingface/accelerate/ /notebooks/sd-scripts/accelerate/"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "markdown",
|
222 |
+
"id": "648e5671-b153-4549-96c8-88afb204b3e4",
|
223 |
+
"metadata": {},
|
224 |
+
"source": [
|
225 |
+
"## RUNNING"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "markdown",
|
230 |
+
"id": "730c4e1b-308f-438c-95a8-e26c671055f5",
|
231 |
+
"metadata": {
|
232 |
+
"tags": []
|
233 |
+
},
|
234 |
+
"source": [
|
235 |
+
"# 2-0.Dataset Setting"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"id": "569d34de-15db-46f4-9af4-7acbfc98e5c8",
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [],
|
244 |
+
"source": [
|
245 |
+
"#起動時。学習素材変更時実行する\n",
|
246 |
+
"#Learning checkpointName .ckpt\n",
|
247 |
+
"model_file_name = \"wd-1-4-anime_e1.ckpt\" #@param {'type' : 'string'} \n",
|
248 |
+
"\n",
|
249 |
+
"model_storage_dir =\"/notebooks/storage/models\"\n",
|
250 |
+
"\n",
|
251 |
+
"model_file_path = f\"{model_storage_dir}/{model_file_name}\"\n",
|
252 |
+
"\n",
|
253 |
+
"# ===================================================================================================\n",
|
254 |
+
"# 正規化データ クラス名\n",
|
255 |
+
"reg_count = 1 #@param {type: \"integer\"}\n",
|
256 |
+
"reg_class =\"girl\" #@param {type: \"string\"}\n",
|
257 |
+
"\n",
|
258 |
+
"#学習元データ トークン(インスタンス)名、クラス名\n",
|
259 |
+
"train_count = 20 #@param {type: \"integer\"} 1epoch=学習素材 × カウント数のステップを回す(webui版で10の部分)\n",
|
260 |
+
"train_token = \"nahida\" #@param {type: \"string\"}\n",
|
261 |
+
"train_class = \"girl\" #@param {type: \"string\"}\n",
|
262 |
+
"\n",
|
263 |
+
"storage_train_dir = \"/notebooks/storage/atelier/dataset/1024_nahidav3\" #@param {type: \"string\"}\n",
|
264 |
+
"storage_class_dir = \"/notebooks/storage/atelier/dataset/Classification\" #@param {type: \"string\"}\n",
|
265 |
+
"\n",
|
266 |
+
"# ===================================================================================================\n",
|
267 |
+
"# Save variables to Jupiter's temp storage so we can access it even if the kernel restarts.\n",
|
268 |
+
"%store model_storage_dir model_file_path reg_count reg_class train_count train_token train_class storage_train_dir storage_class_dir"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "markdown",
|
273 |
+
"id": "b017ace2-cd08-427a-89d5-28ad8f7dbfc5",
|
274 |
+
"metadata": {},
|
275 |
+
"source": [
|
276 |
+
"# 2-1 Dreambooth フォルダ削除 \n",
|
277 |
+
"学習結果を消すので注意 \n",
|
278 |
+
"※学習画像データは消さない "
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": null,
|
284 |
+
"id": "b5aa4b00-b54d-4f5f-a0da-5153a86c1f87",
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [],
|
287 |
+
"source": [
|
288 |
+
"# 学習結果を消すので注意\n",
|
289 |
+
"%cd /notebooks/\n",
|
290 |
+
"\n",
|
291 |
+
"import os\n",
|
292 |
+
"\n",
|
293 |
+
"def delete_dreambooth_folder():\n",
|
294 |
+
" # Check if the directory already exists\n",
|
295 |
+
" if os.path.isdir('/notebooks/dreambooth'):\n",
|
296 |
+
" %rm -r /notebooks/dreambooth\n",
|
297 |
+
" print(\"dreambooth dataset folder deleted done!!\")\n",
|
298 |
+
" else:\n",
|
299 |
+
" print(\"dreambooth dataset folder none\")\n",
|
300 |
+
"\n",
|
301 |
+
"# Delete Dreamboothe Dataset folder\n",
|
302 |
+
"delete_dreambooth_folder()"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": null,
|
308 |
+
"id": "5a27b535-ccd3-40cc-86b0-cab5cd3d63b7",
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": [
|
312 |
+
"# 起動時、学習素材変更時実行する\n",
|
313 |
+
"#@title Create train and reg folder based on description above\n",
|
314 |
+
"%store -r model_storage_dir model_file_path reg_count reg_class train_count train_token train_class storage_train_dir storage_class_dir\n",
|
315 |
+
"\n",
|
316 |
+
"# Import the os and shutil modules\n",
|
317 |
+
"import os\n",
|
318 |
+
"import shutil\n",
|
319 |
+
"\n",
|
320 |
+
"# Change the current working directory to /content\n",
|
321 |
+
"%cd /notebooks\n",
|
322 |
+
"\n",
|
323 |
+
"# Define the dreambooth_directory variable\n",
|
324 |
+
"dreambooth_directory = \"/notebooks/dreambooth\"\n",
|
325 |
+
"\n",
|
326 |
+
"# Check if the dreambooth directory already exists\n",
|
327 |
+
"if os.path.isdir(dreambooth_directory):\n",
|
328 |
+
" # If the directory exists, do nothing\n",
|
329 |
+
" pass\n",
|
330 |
+
"else:\n",
|
331 |
+
" # If the directory does not exist, create it\n",
|
332 |
+
" os.mkdir(dreambooth_directory)\n",
|
333 |
+
"\n",
|
334 |
+
"#@markdown ### Define the reg_folder variable\n",
|
335 |
+
"#reg_count = 1 #@param {type: \"integer\"}\n",
|
336 |
+
"#reg_class =\"kasakai_hikaru\" #@param {type: \"string\"}\n",
|
337 |
+
"reg_folder = str(reg_count) + \"_\" + reg_class\n",
|
338 |
+
"\n",
|
339 |
+
"# Define the reg_directory variable\n",
|
340 |
+
"reg_directory = f\"{dreambooth_directory}/reg_{reg_class}\"\n",
|
341 |
+
"\n",
|
342 |
+
"# Check if the reg directory already exists\n",
|
343 |
+
"if os.path.isdir(reg_directory):\n",
|
344 |
+
" # If the directory exists, do nothing\n",
|
345 |
+
" pass\n",
|
346 |
+
"else:\n",
|
347 |
+
" # If the directory does not exist, create it\n",
|
348 |
+
" os.mkdir(reg_directory)\n",
|
349 |
+
"\n",
|
350 |
+
"# Define the reg_folder_directory variable\n",
|
351 |
+
"reg_folder_directory = f\"{reg_directory}/{reg_folder}\"\n",
|
352 |
+
"\n",
|
353 |
+
"# Check if the reg_folder directory already exists\n",
|
354 |
+
"if os.path.isdir(reg_folder_directory):\n",
|
355 |
+
" # If the directory exists, do nothing\n",
|
356 |
+
" pass\n",
|
357 |
+
"else:\n",
|
358 |
+
" # If the directory does not exist, create it\n",
|
359 |
+
" #os.mkdir(reg_folder_directory)\n",
|
360 |
+
" os.symlink(storage_class_dir, reg_folder_directory)\n",
|
361 |
+
"\n",
|
362 |
+
"#@markdown ### Define the train_folder variable\n",
|
363 |
+
"#train_count = 3300 #@param {type: \"integer\"}\n",
|
364 |
+
"#train_token = \"sls\" #@param {type: \"string\"}\n",
|
365 |
+
"#train_class = \"kasakai_hikaru\" #@param {type: \"string\"}\n",
|
366 |
+
"train_folder = str(train_count) + \"_\" + train_token + \"_\" + train_class\n",
|
367 |
+
"\n",
|
368 |
+
"# Define the train_directory variable\n",
|
369 |
+
"train_directory = f\"{dreambooth_directory}/train_{train_class}\"\n",
|
370 |
+
"\n",
|
371 |
+
"# Check if the train directory already exists\n",
|
372 |
+
"if os.path.isdir(train_directory):\n",
|
373 |
+
" # If the directory exists, do nothing\n",
|
374 |
+
" pass\n",
|
375 |
+
"else:\n",
|
376 |
+
" # If the directory does not exist, create it\n",
|
377 |
+
" os.mkdir(train_directory)\n",
|
378 |
+
" \n",
|
379 |
+
"# Define the train_folder_directory variable\n",
|
380 |
+
"train_folder_directory = f\"{train_directory}/{train_folder}\"\n",
|
381 |
+
"\n",
|
382 |
+
"# Check if the train_folder directory already exists\n",
|
383 |
+
"if os.path.isdir(train_folder_directory):\n",
|
384 |
+
" # If the directory exists, do nothing\n",
|
385 |
+
" pass\n",
|
386 |
+
"else:\n",
|
387 |
+
" # If the directory does not exist, create it\n",
|
388 |
+
" #os.mkdir(train_folder_directory)\n",
|
389 |
+
" os.symlink(storage_train_dir, train_folder_directory)\n",
|
390 |
+
" \n",
|
391 |
+
"%store train_directory train_folder_directory reg_directory reg_folder_directory"
|
392 |
+
]
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"cell_type": "markdown",
|
396 |
+
"id": "1bb54f2f-66a8-4a4f-80c3-a38f6eacd9fe",
|
397 |
+
"metadata": {},
|
398 |
+
"source": [
|
399 |
+
"# Lora Train Start\n",
|
400 |
+
"Dreambooth-Loraの学習を実行する \n",
|
401 |
+
"引数の詳細情報は「sd-scripts/train_network.py」のソースを参照 "
|
402 |
+
]
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": null,
|
407 |
+
"id": "e0b13039-fec7-4002-998a-64429599baca",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": [
|
411 |
+
"#@title Training begin Lora\n",
|
412 |
+
"%store -r model_storage_dir model_file_path train_directory reg_directory \n",
|
413 |
+
"accelerate_config = \"/notebooks/sd-scripts/accelerate/default_config.yaml\"\n",
|
414 |
+
"num_cpu_threads_per_process = 8 #@param {'type':'integer'}\n",
|
415 |
+
"pre_trained_model_path =model_file_path #@param {'type':'string'}\n",
|
416 |
+
"train_data_dir = train_directory #@param {'type':'string'}\n",
|
417 |
+
"reg_data_dir = reg_directory #@param {'type':'string'}\n",
|
418 |
+
"\n",
|
419 |
+
"output_dir =\"/notebooks/dreambooth\" #@param {'type':'string'}\n",
|
420 |
+
"train_batch_size = 6 #@param {type: \"slider\", min: 1, max: 10}\n",
|
421 |
+
"resolution = \"768,768\" #@param [\"512,512\", \"768,768\"] {allow-input: false}\n",
|
422 |
+
"learning_rate =\"1e-4\" #@param {'type':'string'}\n",
|
423 |
+
"mixed_precision = \"bf16\" #@param [\"fp16\", \"bf16\"] {allow-input: false}\n",
|
424 |
+
"max_train_steps = 3200 #@param {'type':'integer'}\n",
|
425 |
+
"save_precision = \"fp16\" #@param [\"float\", \"fp16\", \"bf16\"] {allow-input: false}\n",
|
426 |
+
"save_every_n_epochs = 5 #@param {'type':'integer'}\n",
|
427 |
+
"use_network_module = \"networks.lora\" #@param {'type':'string'}\n",
|
428 |
+
"caption_extension =\".txt\" #@param {'type':'string'}\n",
|
429 |
+
"#resme_path ='/notebooks/dreambooth/last-state' #学習再開する場合フォルダを指定する\n",
|
430 |
+
"resme_path ='' #学習再開する場合フォルダを指定する\n",
|
431 |
+
"resume = f'--resume={resme_path}' if resme_path else '' #@param {'type':'string'}\n",
|
432 |
+
"max_token_length = 225 #@param {'type':'integer'}\n",
|
433 |
+
"\n",
|
434 |
+
"%cd /notebooks/sd-scripts/\n",
|
435 |
+
"!accelerate launch --config_file {accelerate_config} --num_cpu_threads_per_process {num_cpu_threads_per_process} train_network.py \\\n",
|
436 |
+
" --v2 \\\n",
|
437 |
+
" --max_token_length={max_token_length} \\\n",
|
438 |
+
" --pretrained_model_name_or_path={pre_trained_model_path} \\\n",
|
439 |
+
" --train_data_dir={train_data_dir} \\\n",
|
440 |
+
" --reg_data_dir={reg_data_dir} \\\n",
|
441 |
+
" --output_dir={output_dir} \\\n",
|
442 |
+
" --prior_loss_weight=1.0 \\\n",
|
443 |
+
" --resolution={resolution} \\\n",
|
444 |
+
" --train_batch_size={train_batch_size}\\\n",
|
445 |
+
" --learning_rate={learning_rate}\\\n",
|
446 |
+
" --max_train_steps={max_train_steps} \\\n",
|
447 |
+
" --use_8bit_adam \\\n",
|
448 |
+
" --xformers \\\n",
|
449 |
+
" --cache_latents \\\n",
|
450 |
+
" --mixed_precision={mixed_precision} \\\n",
|
451 |
+
" --gradient_checkpointing \\\n",
|
452 |
+
" --save_every_n_epochs={save_every_n_epochs} \\\n",
|
453 |
+
" --enable_bucket \\\n",
|
454 |
+
" --network_module={use_network_module} \\\n",
|
455 |
+
" --caption_extension={caption_extension} \\\n",
|
456 |
+
" --save_state {resume}"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "markdown",
|
461 |
+
"id": "371b43fe-9293-4f1e-a026-72b3f94df6e2",
|
462 |
+
"metadata": {
|
463 |
+
"jp-MarkdownHeadingCollapsed": true,
|
464 |
+
"tags": []
|
465 |
+
},
|
466 |
+
"source": [
|
467 |
+
"# 3.Dataset Labeling (おまけ)\n",
|
468 |
+
"FineTune用 Lora学習には使わない。WD14taggerは使うかも"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"cell_type": "code",
|
473 |
+
"execution_count": null,
|
474 |
+
"id": "05528d73-883e-4365-a1e7-d82cf61eee6e",
|
475 |
+
"metadata": {},
|
476 |
+
"outputs": [],
|
477 |
+
"source": [
|
478 |
+
"# 3-1.BLIPでキャプションファイル(.caption)を学習素材と同じ場所に作成する\n",
|
479 |
+
"%store -r storage_train_dir\n",
|
480 |
+
"%cd /notebooks/sd-scripts/\n",
|
481 |
+
"batch_size = 8 #@param {'type':'integer'}\n",
|
482 |
+
"\n",
|
483 |
+
"!python finetune/make_captions.py --batch_size {batch_size} {storage_train_dir}"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "code",
|
488 |
+
"execution_count": null,
|
489 |
+
"id": "7c58ed68-fc08-4d1a-9630-d14c6b0b3db8",
|
490 |
+
"metadata": {},
|
491 |
+
"outputs": [],
|
492 |
+
"source": [
|
493 |
+
"# 3-2 WD1.4 taggerでタグテキスト(.txt)を学習素材と同じ場所に作成する\n",
|
494 |
+
"#@title Start WD 1.4 Tagger\n",
|
495 |
+
"%store -r storage_train_dir\n",
|
496 |
+
"%cd /notebooks/sd-scripts/\n",
|
497 |
+
"\n",
|
498 |
+
"batch_size = 8 #@param {'type':'integer'}\n",
|
499 |
+
"caption_extension = \".txt\" #@param [\".txt\",\".caption\"]\n",
|
500 |
+
"\n",
|
501 |
+
"!python finetune/tag_images_by_wd14_tagger.py \\\n",
|
502 |
+
" {storage_train_dir} \\\n",
|
503 |
+
" --batch_size {batch_size} \\\n",
|
504 |
+
" --caption_extension {caption_extension}"
|
505 |
+
]
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"cell_type": "code",
|
509 |
+
"execution_count": null,
|
510 |
+
"id": "b4aef070-b6f2-4346-a553-888bb4404e83",
|
511 |
+
"metadata": {},
|
512 |
+
"outputs": [],
|
513 |
+
"source": [
|
514 |
+
"# 3-3 キャプションとタグを結合して1つのファイルにまとめる(meta_clean.json作成)\n",
|
515 |
+
"#@title Create meta_clean.json \n",
|
516 |
+
"# Change the working directory\n",
|
517 |
+
"%store -r storage_train_dir\n",
|
518 |
+
"%cd /notebooks/sd-scripts/\n",
|
519 |
+
"\n",
|
520 |
+
"#@markdown ### Define Parameters\n",
|
521 |
+
"meta_cap_dd = \"/notebooks/dreambooth/meta_cap_dd.json\" \n",
|
522 |
+
"meta_cap = \"/notebooks/dreambooth/meta_cap.json\" \n",
|
523 |
+
"meta_clean = \"/notebooks/dreambooth/meta_clean.json\" #@param {'type':'string'}\n",
|
524 |
+
"\n",
|
525 |
+
"# Check if the train_data_dir exists and is a directory\n",
|
526 |
+
"if os.path.isdir(storage_train_dir):\n",
|
527 |
+
" # Check if there are any .caption files in the train_data_dir\n",
|
528 |
+
" if any(file.endswith('.caption') for file in os.listdir(storage_train_dir)):\n",
|
529 |
+
" # Create meta_cap.json from captions\n",
|
530 |
+
" !python finetune/merge_captions_to_metadata.py \\\n",
|
531 |
+
" {storage_train_dir} \\\n",
|
532 |
+
" {meta_cap}\n",
|
533 |
+
"\n",
|
534 |
+
" # Check if there are any .txtn files in the train_data_dir\n",
|
535 |
+
" if any(file.endswith('.txt') for file in os.listdir(storage_train_dir)):\n",
|
536 |
+
" # Create meta_cap_dd.json from tags\n",
|
537 |
+
" !python finetune/merge_dd_tags_to_metadata.py \\\n",
|
538 |
+
" {storage_train_dir} \\\n",
|
539 |
+
" {meta_cap_dd}\n",
|
540 |
+
"else:\n",
|
541 |
+
" print(\"train_data_dir does not exist or is not a directory.\")\n",
|
542 |
+
"\n",
|
543 |
+
"# Merge meta_cap.json to meta_cap_dd.json\n",
|
544 |
+
"if os.path.exists(meta_cap) and os.path.exists(meta_cap_dd):\n",
|
545 |
+
" !python finetune/merge_dd_tags_to_metadata.py \\\n",
|
546 |
+
" {storage_train_dir} \\\n",
|
547 |
+
" --in_json {meta_cap} \\\n",
|
548 |
+
" {meta_cap_dd}\n",
|
549 |
+
"\n",
|
550 |
+
"# Clean meta_cap_dd.json and store it to meta_clean.json\n",
|
551 |
+
"if os.path.exists(meta_cap_dd):\n",
|
552 |
+
" # Clean captions and tags in meta_cap_dd.json and store the result in meta_clean.json\n",
|
553 |
+
" !python finetune/clean_captions_and_tags.py \\\n",
|
554 |
+
" {meta_cap_dd} \\\n",
|
555 |
+
" {meta_clean}\n",
|
556 |
+
"elif os.path.exists(meta_cap):\n",
|
557 |
+
" # If meta_cap_dd.json does not exist, clean meta_cap.json and store the result in meta_clean.json\n",
|
558 |
+
" !python finetune/clean_captions_and_tags.py \\\n",
|
559 |
+
" {meta_cap} \\\n",
|
560 |
+
" {meta_clean}\n"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": null,
|
566 |
+
"id": "067d56ab-cc17-4acf-af5c-3913c56c722a",
|
567 |
+
"metadata": {},
|
568 |
+
"outputs": [],
|
569 |
+
"source": [
|
570 |
+
"# 3-4 latentsの事前取得\n",
|
571 |
+
"#@title Aspect Ratio Bucketing\n",
|
572 |
+
"%store -r storage_train_dir model_file_path\n",
|
573 |
+
"\n",
|
574 |
+
"# Change working directory\n",
|
575 |
+
"%cd /notebooks/sd-scripts/\n",
|
576 |
+
"\n",
|
577 |
+
"#@markdown ### Define parameters\n",
|
578 |
+
"\n",
|
579 |
+
"#model_dir = \"runwayml/stable-diffusion-v1-5\" #@param {'type' : 'string'} \n",
|
580 |
+
"model_dir = model_file_path #@param {'type' : 'string'} \n",
|
581 |
+
"batch_size = 4 #@param {'type':'integer'}\n",
|
582 |
+
"max_resolution = \"768,768\" #@param [\"512,512\", \"768,768\"] {allow-input: false}\n",
|
583 |
+
"mixed_precision = \"bf16\" #@param [\"no\", \"fp16\", \"bf16\"] {allow-input: false}\n",
|
584 |
+
"meta_clean = \"/notebooks/dreambooth/meta_clean.json\"\n",
|
585 |
+
"meta_lat = \"/notebooks/dreambooth/meta_lat.json\"\n",
|
586 |
+
"\n",
|
587 |
+
"\n",
|
588 |
+
"# Run script to prepare buckets and latents\n",
|
589 |
+
"!python finetune/prepare_buckets_latents.py \\\n",
|
590 |
+
" {storage_train_dir} \\\n",
|
591 |
+
" {meta_clean} \\\n",
|
592 |
+
" {meta_lat} \\\n",
|
593 |
+
" {model_dir} \\\n",
|
594 |
+
" --batch_size {batch_size} \\\n",
|
595 |
+
" --max_resolution {max_resolution} \\\n",
|
596 |
+
" --mixed_precision {mixed_precision}\n"
|
597 |
+
]
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"metadata": {
|
601 |
+
"kernelspec": {
|
602 |
+
"display_name": "Python 3 (ipykernel)",
|
603 |
+
"language": "python",
|
604 |
+
"name": "python3"
|
605 |
+
},
|
606 |
+
"language_info": {
|
607 |
+
"codemirror_mode": {
|
608 |
+
"name": "ipython",
|
609 |
+
"version": 3
|
610 |
+
},
|
611 |
+
"file_extension": ".py",
|
612 |
+
"mimetype": "text/x-python",
|
613 |
+
"name": "python",
|
614 |
+
"nbconvert_exporter": "python",
|
615 |
+
"pygments_lexer": "ipython3",
|
616 |
+
"version": "3.9.13"
|
617 |
+
}
|
618 |
+
},
|
619 |
+
"nbformat": 4,
|
620 |
+
"nbformat_minor": 5
|
621 |
+
}
|