Update README
Browse files
README.md
CHANGED
@@ -1,5 +1,74 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- tr
|
5 |
+
pipeline_tag: text-classification
|
6 |
+
tags:
|
7 |
+
- job advertisement
|
8 |
+
- turkish bert
|
9 |
+
- bert-based
|
10 |
+
- StratifiedKFold
|
11 |
---
|
12 |
|
13 |
+
---
|
14 |
+
language:
|
15 |
+
- tr
|
16 |
+
tags:
|
17 |
+
- translation
|
18 |
+
license: apache-2.0
|
19 |
+
---
|
20 |
+
|
21 |
+
## About the model
|
22 |
+
It has been trained with 15451 real job advertisement data taken as tagged by isinolsun.com
|
23 |
+
|
24 |
+
Included classes;
|
25 |
+
|
26 |
+
- Uygun İlan
|
27 |
+
- Is Ilani Degil
|
28 |
+
- Mustehcen
|
29 |
+
- Cift Pozisyon
|
30 |
+
|
31 |
+
|
32 |
+
Accordingly, the success rates in education are as follows;
|
33 |
+
|
34 |
+
- **Model is Turkish bert-based.**
|
35 |
+
- **Used StratifiedKFold(5) for validation.**
|
36 |
+
- results [0.806858621805241, 0.8912621359223301, 0.9440129449838188, 0.9750809061488673, 0.9851132686084142]
|
37 |
+
|
38 |
+
Mean-Precision: 0.9204655754937342
|
39 |
+
|
40 |
+
|
41 |
+
| | Uygun İlan | Is Ilani Degil | Mustehcen | Cift Pozisyon |
|
42 |
+
| ------ | ------ | ------ | ------ | ------ |
|
43 |
+
| Precision | 0.986 | 0.996 | 0.966 | 0.970 |
|
44 |
+
| Recall | 0.992 | 0.986 | 0.966 | 0.959 |
|
45 |
+
| F1 Score | 0.989 | 0.991 | 0.966 | 0.965 |
|
46 |
+
Accuracy : 0.975
|
47 |
+
|
48 |
+
## Example
|
49 |
+
```sh
|
50 |
+
from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-job-advertisement")
|
53 |
+
model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-job-advertisement", from_pt=True)
|
54 |
+
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
55 |
+
|
56 |
+
print(pipe('Bu bir denemedir hadi sende dene!'))
|
57 |
+
```
|
58 |
+
Result;
|
59 |
+
```sh
|
60 |
+
[{'label': 'Is Ilani Degil', 'score': 0.999987899677558}]
|
61 |
+
```
|
62 |
+
- label= It shows which class the sent Turkish text belongs to according to the model.
|
63 |
+
- score= It shows the compliance rate of the Turkish text sent to the label found.
|
64 |
+
|
65 |
+
## Authors
|
66 |
+
- Seyma SARIGIL: seymasargil@gmail.com
|
67 |
+
- Murat KOKLU: mkoklu@selcuk.edu.tr
|
68 |
+
|
69 |
+
|
70 |
+
## License
|
71 |
+
|
72 |
+
apache-2.0
|
73 |
+
|
74 |
+
**Free Software, Hell Yeah!**
|