Seymasa commited on
Commit
32685bc
1 Parent(s): c373ed9

Update README

Browse files
Files changed (1) hide show
  1. README.md +70 -1
README.md CHANGED
@@ -1,5 +1,74 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
4
 
5
- **It is not yet ready to serve. We are working on it.**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - tr
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - job advertisement
8
+ - turkish bert
9
+ - bert-based
10
+ - StratifiedKFold
11
  ---
12
 
13
+ ---
14
+ language:
15
+ - tr
16
+ tags:
17
+ - translation
18
+ license: apache-2.0
19
+ ---
20
+
21
+ ## About the model
22
+ It has been trained with 15451 real job advertisement data taken as tagged by isinolsun.com
23
+
24
+ Included classes;
25
+
26
+ - Uygun İlan
27
+ - Is Ilani Degil
28
+ - Mustehcen
29
+ - Cift Pozisyon
30
+
31
+
32
+ Accordingly, the success rates in education are as follows;
33
+
34
+ - **Model is Turkish bert-based.**
35
+ - **Used StratifiedKFold(5) for validation.**
36
+ - results [0.806858621805241, 0.8912621359223301, 0.9440129449838188, 0.9750809061488673, 0.9851132686084142]
37
+
38
+ Mean-Precision: 0.9204655754937342
39
+
40
+
41
+ | | Uygun İlan | Is Ilani Degil | Mustehcen | Cift Pozisyon |
42
+ | ------ | ------ | ------ | ------ | ------ |
43
+ | Precision | 0.986 | 0.996 | 0.966 | 0.970 |
44
+ | Recall | 0.992 | 0.986 | 0.966 | 0.959 |
45
+ | F1 Score | 0.989 | 0.991 | 0.966 | 0.965 |
46
+ Accuracy : 0.975
47
+
48
+ ## Example
49
+ ```sh
50
+ from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-job-advertisement")
53
+ model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-job-advertisement", from_pt=True)
54
+ pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
55
+
56
+ print(pipe('Bu bir denemedir hadi sende dene!'))
57
+ ```
58
+ Result;
59
+ ```sh
60
+ [{'label': 'Is Ilani Degil', 'score': 0.999987899677558}]
61
+ ```
62
+ - label= It shows which class the sent Turkish text belongs to according to the model.
63
+ - score= It shows the compliance rate of the Turkish text sent to the label found.
64
+
65
+ ## Authors
66
+ - Seyma SARIGIL: seymasargil@gmail.com
67
+ - Murat KOKLU: mkoklu@selcuk.edu.tr
68
+
69
+
70
+ ## License
71
+
72
+ apache-2.0
73
+
74
+ **Free Software, Hell Yeah!**