File size: 60,879 Bytes
d26ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
========================
START TIME: Tue Jul  2 16:31:55 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M	examples/config_tiny_llama.py
M	examples/config_tiny_llama.yaml
M	examples/train_tiny_llama.sh
M	src/nanotron/models/llama.py
M	src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] 
W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] *****************************************
W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0702 16:31:57.484000 139796830594880 torch/distributed/run.py:757] *****************************************
W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] 
W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] *****************************************
W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0702 16:31:57.490000 140386122716992 torch/distributed/run.py:757] *****************************************
[default0]:07/02/2024 16:32:15 [WARNING|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Vocab Size Padding] Padded vocab (size: 50257) with 15 dummy tokens (new size: 50272)
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Config:
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            run='%date_%jobid',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            seed=42,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            step=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            consumed_train_samples=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            benchmark_csv_path=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            ignore_sanity_checks=True),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        parallelism=ParallelismArgs(dp=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    pp=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    tp=16,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f55d6098790>,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    tp_linear_async_communication=False,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    expert_parallel_size=1),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 eos_token_id=2,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 hidden_act='silu',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 hidden_size=2048,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 initializer_range=0.02,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 intermediate_size=4096,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 is_llama_config=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 max_position_embeddings=4096,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 num_attention_heads=32,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 num_hidden_layers=24,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 num_key_value_heads=32,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 pad_token_id=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 pretraining_tp=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 rms_norm_eps=1e-05,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 rope_scaling=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 rope_theta=10000.0,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 tie_word_embeddings=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 use_cache=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                 vocab_size=50272),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                        init_method=RandomInit(std=0.025),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                        dtype=torch.bfloat16,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                        make_vocab_size_divisible_by=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                        ddp_bucket_cap_mb=25),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                tokenizer_revision=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                tokenizer_max_length=None),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    checkpoint_interval=100000,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    save_initial_state=False,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    resume_checkpoint_path=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                    checkpoints_path_is_shared_file_system=False),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        logging=LoggingArgs(log_level='info',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            log_level_replica='info',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                            iteration_step_info_interval=1),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        tokens=TokensArgs(sequence_length=4096,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                          train_steps=20,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                          micro_batch_size=32,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                          batch_accumulation_per_replica=32,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                          val_check_interval=-1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                          limit_val_batches=0,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                          limit_test_batches=0),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                     adam_beta1=0.9,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                     adam_beta2=0.95,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                     torch_adam_is_fused=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                     name='adamW'),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                zero_stage=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                weight_decay=0.01,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                clip_grad=1.0,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                accumulate_grad_in_fp32=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                        lr_warmup_steps=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                        lr_warmup_style='linear',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                        lr_decay_style='linear',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                        lr_decay_steps=19,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                        lr_decay_starting_step=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                        min_decay_lr=1e-05)),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                      start_training_step=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                      data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                                 hf_dataset_splits='train',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                                 hf_dataset_config_name=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                                 dataset_processing_num_proc_per_process=64,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                                 dataset_overwrite_cache=False,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                                                 text_column_name='text'),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                    seed=42,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:                                                    num_loading_workers=32))],
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-1_tp-16_pp-1_mbz-32')),
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:        lighteval=None)
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Model Config:
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: LlamaConfig(bos_token_id=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             eos_token_id=2,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             hidden_act='silu',
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             hidden_size=2048,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             initializer_range=0.02,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             intermediate_size=4096,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             is_llama_config=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             max_position_embeddings=4096,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             num_attention_heads=32,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             num_hidden_layers=24,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             num_key_value_heads=32,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             pad_token_id=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             pretraining_tp=1,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             rms_norm_eps=1e-05,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             rope_scaling=None,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             rope_theta=10000.0,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             tie_word_embeddings=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             use_cache=True,
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:             vocab_size=50272)
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Building model..
[default0]:07/02/2024 16:32:15 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Setting PP block ranks...
[default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=3|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=3|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=4|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=4|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=4|ip-26-0-169-239]: No checkpoint path provided.
[default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=3|ip-26-0-169-239]: No checkpoint path provided.
[default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=1|ip-26-0-169-239]: No checkpoint path provided.
[default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=5|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=5|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=5|ip-26-0-169-239]: No checkpoint path provided.
[default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=7|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=7|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=7|ip-26-0-169-239]: No checkpoint path provided.
[default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=2|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=2|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=2|ip-26-0-169-239]: No checkpoint path provided.
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Total number of parameters: 1.11G (2119.44MiB)
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: No checkpoint path provided.
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Parametrizing model parameters using StandardParametrizator
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [ZeRO sharding] DP Rank 0 has 69.4M out of 69.4M (100.00%) params' optimizer states
[default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=6|ip-26-0-169-239]: Local number of parameters: 69.4M (132.46MiB)
[default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=6|ip-26-0-169-239]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=6|ip-26-0-169-239]: No checkpoint path provided.
[default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=11|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=11|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default3]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=11|ip-26-0-169-247]: No checkpoint path provided.
[default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=9|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=9|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default1]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=9|ip-26-0-169-247]: No checkpoint path provided.
[default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=13|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=13|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=10|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=14|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=14|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default5]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=13|ip-26-0-169-247]: No checkpoint path provided.
[default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=12|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=12|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=10|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default2]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=10|ip-26-0-169-247]: No checkpoint path provided.
[default6]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=14|ip-26-0-169-247]: No checkpoint path provided.
[default4]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=12|ip-26-0-169-247]: No checkpoint path provided.
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=8|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=8|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default0]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=8|ip-26-0-169-247]: No checkpoint path provided.
[default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=15|ip-26-0-169-247]: Local number of parameters: 69.4M (132.46MiB)
[default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=15|ip-26-0-169-247]: [After model building] Memory usage: 159.71MiB. Peak allocated: 174.02MiB Peak reserved: 178.00MiB
[default7]:07/02/2024 16:32:32 [INFO|DP=0|PP=0|TP=15|ip-26-0-169-247]: No checkpoint path provided.
[default0]:07/02/2024 16:32:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/02/2024 16:32:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Using `datasets` library
[default0]:07/02/2024 16:32:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/02/2024 16:32:33 [WARNING|DP=0|PP=0|TP=0|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Training Plan] There are 1 training stages 
[default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Stage Training Stage] start from step 1 
[default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: 
[default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: [Start training] datetime: 2024-07-02 16:32:34.409740 | mbs: 32 | grad_accum: 32 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/02/2024 16:32:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-169-239]:  Memory usage: 689.57MiB. Peak allocated 689.57MiB. Peak reserved: 710.00MiB
[default4]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=4|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=2|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=13|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=10|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=9|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=8|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=3|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=1|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=5|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=7|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=6|ip-26-0-169-239]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=11|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=14|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=12|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/02/2024 16:32:34 [WARNING|DP=0|PP=0|TP=15|ip-26-0-169-247]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:[rank7]: OSError: [Errno 122] Disk quota exceeded
[default7]:
[default7]:[rank7]: During handling of the above exception, another exception occurred:
[default7]:
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]:     trainer.train(dataloader)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]:     outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]:     output = model(**micro_batch)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]:     sharded_logits = self.model(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]:[rank7]:     output = self.pp_block(**new_kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default7]:[rank7]:     hidden_states = self.input_layernorm(hidden_states)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]:     return self._call_impl(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]:     return forward_call(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default7]:[rank7]:     return layer_norm_fn(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default7]:[rank7]:     return LayerNormFn.apply(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default7]:[rank7]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default7]:[rank7]:     y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default7]:[rank7]:     _layer_norm_fwd_1pass_kernel[(M,)](
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default7]:[rank7]:     return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default7]:[rank7]:     timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default7]:[rank7]:     timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default7]:[rank7]:     return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default7]:[rank7]:     fn()
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default7]:[rank7]:     self.fn.run(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default7]:[rank7]:     return self.fn.run(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default7]:[rank7]:     return self.fn.run(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default7]:[rank7]:     return self.fn.run(*args, **kwargs)
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default7]:[rank7]:     self.cache[device][key] = compile(
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default7]:[rank7]:     metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default7]:[rank7]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default7]:[rank7]:     with open(temp_path, mode) as f:
[default7]:[rank7]: OSError: [Errno 122] Disk quota exceeded
[default4]:[rank4]: OSError: [Errno 122] Disk quota exceeded
[default4]:
[default4]:[rank4]: During handling of the above exception, another exception occurred:
[default4]:
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]:     trainer.train(dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]:     outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank4]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]:     output = model(**micro_batch)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]:     sharded_logits = self.model(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]:[rank4]:     output = self.pp_block(**new_kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default4]:[rank4]:     hidden_states = self.input_layernorm(hidden_states)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]:     return self._call_impl(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]:     return forward_call(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default4]:[rank4]:     return layer_norm_fn(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default4]:[rank4]:     return LayerNormFn.apply(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default4]:[rank4]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default4]:[rank4]:     y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default4]:[rank4]:     _layer_norm_fwd_1pass_kernel[(M,)](
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default4]:[rank4]:     return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default4]:[rank4]:     timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default4]:[rank4]:     timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default4]:[rank4]:     return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default4]:[rank4]:     fn()
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default4]:[rank4]:     self.fn.run(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank4]:     return self.fn.run(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank4]:     return self.fn.run(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank4]:     return self.fn.run(*args, **kwargs)
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default4]:[rank4]:     self.cache[device][key] = compile(
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default4]:[rank4]:     metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default4]:[rank4]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default4]:[rank4]:     with open(temp_path, mode) as f:
[default4]:[rank4]: OSError: [Errno 122] Disk quota exceeded
[default4]:[rank12]: OSError: [Errno 122] Disk quota exceeded
[default4]:
[default4]:[rank12]: During handling of the above exception, another exception occurred:
[default4]:
[default4]:[rank12]: Traceback (most recent call last):
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank12]:     trainer.train(dataloader)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank12]:     outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank12]:     outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank12]:     output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank12]:     output = model(**micro_batch)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]:     return self._call_impl(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]:     return forward_call(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank12]:     sharded_logits = self.model(
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]:     return self._call_impl(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]:     return forward_call(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank12]:     return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank12]:     hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]:     return self._call_impl(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]:     return forward_call(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]:[rank12]:     output = self.pp_block(**new_kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]:     return self._call_impl(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]:     return forward_call(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 629, in forward
[default4]:[rank12]:     hidden_states = self.input_layernorm(hidden_states)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]:     return self._call_impl(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]:     return forward_call(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/nn/layer_norm.py", line 42, in forward
[default4]:[rank12]:     return layer_norm_fn(
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 875, in layer_norm_fn
[default4]:[rank12]:     return LayerNormFn.apply(
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/function.py", line 598, in apply
[default4]:[rank12]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 748, in forward
[default4]:[rank12]:     y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/flash_attn/ops/triton/layer_norm.py", line 335, in _layer_norm_fwd
[default4]:[rank12]:     _layer_norm_fwd_1pass_kernel[(M,)](
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in <lambda>
[default4]:[rank12]:     return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in run
[default4]:[rank12]:     timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 143, in <dictcomp>
[default4]:[rank12]:     timings = {config: self._bench(*args, config=config, **kwargs) for config in pruned_configs}
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 122, in _bench
[default4]:[rank12]:     return do_bench(kernel_call, warmup=self.warmup, rep=self.rep, quantiles=(0.5, 0.2, 0.8))
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/testing.py", line 102, in do_bench
[default4]:[rank12]:     fn()
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 110, in kernel_call
[default4]:[rank12]:     self.fn.run(
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank12]:     return self.fn.run(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank12]:     return self.fn.run(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/autotuner.py", line 305, in run
[default4]:[rank12]:     return self.fn.run(*args, **kwargs)
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/jit.py", line 416, in run
[default4]:[rank12]:     self.cache[device][key] = compile(
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/compiler/compiler.py", line 194, in compile
[default4]:[rank12]:     metadata_group[f"{src.name}.{ext}"] = fn_cache_manager.put(next_module, f"{src.name}.{ext}")
[default4]:[rank12]:   File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/triton/runtime/cache.py", line 123, in put
[default4]:[rank12]:     with open(temp_path, mode) as f:
[default4]:[rank12]: OSError: [Errno 122] Disk quota exceeded
W0702 16:32:48.847000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427255 closing signal SIGTERM
W0702 16:32:48.852000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427256 closing signal SIGTERM
W0702 16:32:48.854000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427257 closing signal SIGTERM
W0702 16:32:48.862000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99623 closing signal SIGTERM
W0702 16:32:48.863000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427258 closing signal SIGTERM
W0702 16:32:48.866000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99624 closing signal SIGTERM
W0702 16:32:48.871000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99625 closing signal SIGTERM
W0702 16:32:48.875000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99626 closing signal SIGTERM
W0702 16:32:48.878000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99628 closing signal SIGTERM
W0702 16:32:48.880000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99629 closing signal SIGTERM
W0702 16:32:48.882000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 99630 closing signal SIGTERM
W0702 16:32:48.891000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427260 closing signal SIGTERM
W0702 16:32:48.894000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 2427261 closing signal SIGTERM
E0702 16:32:51.295000 140386122716992 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 4 (pid: 2427259) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
  time      : 2024-07-02_16:32:48
  host      : ip-26-0-169-239.ec2.internal
  rank      : 7 (local_rank: 7)
  exitcode  : 1 (pid: 2427262)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2024-07-02_16:32:48
  host      : ip-26-0-169-239.ec2.internal
  rank      : 4 (local_rank: 4)
  exitcode  : 1 (pid: 2427259)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
E0702 16:32:51.480000 139796830594880 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 4 (pid: 99627) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
W0702 16:32:51.487000 139796830594880 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-247.ec2.internal_99554_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0702 16:32:51.515000 139796830594880 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-247.ec2.internal_99554_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0702 16:32:51.525000 139796830594880 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-247.ec2.internal_99554_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
    sys.exit(main())
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
    return f(*args, **kwargs)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
    run(args)
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
    elastic_launch(
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
    return launch_agent(self._config, self._entrypoint, list(args))
  File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
    raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
  <NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2024-07-02_16:32:48
  host      : ip-26-0-169-247.ec2.internal
  rank      : 12 (local_rank: 4)
  exitcode  : 1 (pid: 99627)
  error_file: <N/A>
  traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-169-239: task 0: Exited with exit code 1
srun: error: ip-26-0-169-247: task 1: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.