File size: 177,870 Bytes
33ea874 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
========================
START TIME: Wed Jul 3 04:03:49 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757]
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] *****************************************
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757]
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757]
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757]
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757]
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757]
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757]
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757]
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 04:04:21 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config:
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: run='%date_%jobid',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: seed=42,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: step=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: consumed_train_samples=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: benchmark_csv_path=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: ignore_sanity_checks=True),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: parallelism=ParallelismArgs(dp=16,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pp=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp=4,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f30e95588b0>,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp_linear_async_communication=False,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: expert_parallel_size=1),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: eos_token_id=2,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_act='silu',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_size=2048,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: initializer_range=0.02,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: intermediate_size=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: is_llama_config=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: max_position_embeddings=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_attention_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_hidden_layers=24,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_key_value_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pad_token_id=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pretraining_tp=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rms_norm_eps=1e-05,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_scaling=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_theta=10000.0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tie_word_embeddings=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: use_cache=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: vocab_size=50260),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: init_method=RandomInit(std=0.025),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dtype=torch.bfloat16,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: make_vocab_size_divisible_by=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: ddp_bucket_cap_mb=25),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer_revision=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer_max_length=None),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoint_interval=100000,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: save_initial_state=False,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: resume_checkpoint_path=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: log_level_replica='info',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration_step_info_interval=1),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: train_steps=20,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: micro_batch_size=2,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: batch_accumulation_per_replica=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: val_check_interval=-1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: limit_val_batches=0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: limit_test_batches=0),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: adam_beta1=0.9,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: adam_beta2=0.95,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: torch_adam_is_fused=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: name='adamW'),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: zero_stage=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: weight_decay=0.01,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: clip_grad=1.0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: accumulate_grad_in_fp32=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_warmup_steps=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_warmup_style='linear',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_style='linear',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_steps=19,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_starting_step=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: min_decay_lr=1e-05)),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: start_training_step=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hf_dataset_splits='train',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hf_dataset_config_name=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dataset_overwrite_cache=False,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: text_column_name='text'),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: seed=42,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_loading_workers=0))],
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-2')),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lighteval=None)
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Model Config:
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: eos_token_id=2,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_act='silu',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_size=2048,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: initializer_range=0.02,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: intermediate_size=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: is_llama_config=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: max_position_embeddings=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_attention_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_hidden_layers=24,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_key_value_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pad_token_id=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pretraining_tp=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rms_norm_eps=1e-05,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_scaling=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_theta=10000.0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tie_word_embeddings=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: use_cache=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: vocab_size=50260)
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Building model..
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Setting PP block ranks...
[default2]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default2]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default2]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default1]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Total number of parameters: 1.11G (2117.09MiB)
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default1]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Parametrizing model parameters using StandardParametrizator
[default7]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=3|ip-26-0-172-57]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=0|ip-26-0-172-57]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=1|ip-26-0-172-57]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=3|ip-26-0-172-57]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=2|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=1|ip-26-0-172-57]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=0|ip-26-0-172-57]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=2|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=1|ip-26-0-163-220]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=0|ip-26-0-163-226]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=3|ip-26-0-163-220]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=0|ip-26-0-163-220]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=2|ip-26-0-163-220]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=2|ip-26-0-163-226]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=0|ip-26-0-163-226]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=1|ip-26-0-163-226]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=2|ip-26-0-163-226]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=3|ip-26-0-163-226]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=3|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=1|ip-26-0-163-226]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=2|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=1|ip-26-0-163-220]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=0|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=1|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=3|ip-26-0-163-226]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=2|ip-26-0-172-73]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=3|ip-26-0-172-73]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=1|ip-26-0-160-192]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=2|ip-26-0-160-192]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=0|ip-26-0-172-73]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=0|ip-26-0-160-192]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=2|ip-26-0-172-73]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=0|ip-26-0-172-73]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=1|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=3|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=3|ip-26-0-160-192]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=3|ip-26-0-169-86]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=0|ip-26-0-169-86]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=1|ip-26-0-169-86]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=1|ip-26-0-168-238]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=0|ip-26-0-168-238]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=3|ip-26-0-168-238]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=2|ip-26-0-168-238]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=2|ip-26-0-169-86]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=2|ip-26-0-169-86]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=0|ip-26-0-168-238]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=1|ip-26-0-168-238]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=3|ip-26-0-168-238]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=2|ip-26-0-168-238]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=3|ip-26-0-169-86]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=1|ip-26-0-169-86]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=0|ip-26-0-169-86]: No checkpoint path provided.
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 0 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 1 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 2 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 3 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 4 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 5 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 6 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 7 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 8 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 9 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 10 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 11 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 12 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 13 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 14 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 15 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 04:04:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Using `datasets` library
[default0]:07/03/2024 04:04:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 04:04:41 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] There are 1 training stages
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Stage Training Stage] start from step 1
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Start training] datetime: 2024-07-03 04:04:43.925243 | mbs: 2 | grad_accum: 32 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1678.92MiB. Peak allocated 1678.92MiB. Peak reserved: 1736.00MiB
[default1]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=0|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=3|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=1|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=0|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=0|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=3|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=2|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=1|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=3|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=1|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=2|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=1|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=2|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=2|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=1|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=0|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=3|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=2|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=3|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=1|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=1|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=0|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=1|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=1|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=2|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=0|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=0|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=2|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=1|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=0|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=2|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=1|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=3|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=3|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=2|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=2|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=0|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=3|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=0|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=1|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=3|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=2|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=0|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=0|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=2|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=0|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=1|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=2|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=3|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=3|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=3|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=3|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default5]:07/03/2024 04:04:54 [WARNING|DP=13|PP=0|TP=1|ip-26-0-172-57]: Using the latest cached version of the dataset since roneneldan/TinyStories couldn't be found on the Hugging Face Hub
[default5]:07/03/2024 04:04:54 [WARNING|DP=13|PP=0|TP=1|ip-26-0-172-57]: Found the latest cached dataset configuration 'default' at /admin/home/ferdinand_mom/.cache/roneneldan___tiny_stories/default/0.0.0/691b0d9bd48ade766778c940011ca1c549f6359b (last modified on Mon Jun 24 07:59:52 2024).
[default5]:Using the latest cached version of the dataset since roneneldan/TinyStories couldn't be found on the Hugging Face Hub
[default5]:Found the latest cached dataset configuration 'default' at /admin/home/ferdinand_mom/.cache/roneneldan___tiny_stories/default/0.0.0/691b0d9bd48ade766778c940011ca1c549f6359b (last modified on Mon Jun 24 07:59:52 2024).
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default0]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default0]:07/03/2024 04:04:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1755.07MiB. Peak allocated 7387.23MiB. Peak reserved: 8068.00MiB
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]: warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]: warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]: warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]: warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]: warnings.warn(
[default0]:07/03/2024 04:05:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 19.4K | tokens_per_sec: 216K | tokens_per_sec_per_gpu: 3.38K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 0.0001 | model_tflops_per_gpu: 30.6 | hardware_tflops_per_gpu: 30.6 | grad_norm: 20.6 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 2979.82MiB. Peak reserved: 8712.00MiB
[default0]:07/03/2024 04:05:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.48MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 5.39K | tokens_per_sec: 778K | tokens_per_sec_per_gpu: 12.2K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 9.53e-05 | model_tflops_per_gpu: 110 | hardware_tflops_per_gpu: 110 | grad_norm: 20.7 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 2979.83MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.48MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 5.29K | tokens_per_sec: 792K | tokens_per_sec_per_gpu: 12.4K | global_batch_size: 1.02K | lm_loss: 11.6 | lr: 9.05e-05 | model_tflops_per_gpu: 112 | hardware_tflops_per_gpu: 112 | grad_norm: 194 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 2979.83MiB. Peak reserved: 8718.00MiB
[default0]:STAGE:2024-07-03 04:05:14 1146591:1146591 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
[default0]:07/03/2024 04:05:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.48MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 6.92K | tokens_per_sec: 606K | tokens_per_sec_per_gpu: 9.47K | global_batch_size: 1.02K | lm_loss: 13.6 | lr: 8.58e-05 | model_tflops_per_gpu: 86 | hardware_tflops_per_gpu: 86 | grad_norm: 28 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 2979.83MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 6.96K | tokens_per_sec: 602K | tokens_per_sec_per_gpu: 9.41K | global_batch_size: 1.02K | lm_loss: 12 | lr: 8.11e-05 | model_tflops_per_gpu: 85.4 | hardware_tflops_per_gpu: 85.4 | grad_norm: 48.9
[default0]:07/03/2024 04:05:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 6.91K | tokens_per_sec: 607K | tokens_per_sec_per_gpu: 9.48K | global_batch_size: 1.02K | lm_loss: 10.9 | lr: 7.63e-05 | model_tflops_per_gpu: 86 | hardware_tflops_per_gpu: 86 | grad_norm: 19.8
[default0]:STAGE:2024-07-03 04:05:52 1146591:1146591 ActivityProfilerController.cpp:320] Completed Stage: Collection
[default0]:STAGE:2024-07-03 04:05:54 1146591:1146591 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
[default0]:07/03/2024 04:08:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 7 / 20 | consumed_tokens: 29.4M | elapsed_time_per_iteration_ms: 4.81K | tokens_per_sec: 871K | tokens_per_sec_per_gpu: 13.6K | global_batch_size: 1.02K | lm_loss: 10.4 | lr: 7.16e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 8.62
[default0]:07/03/2024 04:08:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 8 / 20 | consumed_tokens: 33.6M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 873K | tokens_per_sec_per_gpu: 13.6K | global_batch_size: 1.02K | lm_loss: 9.66 | lr: 6.68e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 6.89
[default0]:07/03/2024 04:08:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:24 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 9 / 20 | consumed_tokens: 37.7M | elapsed_time_per_iteration_ms: 4.81K | tokens_per_sec: 873K | tokens_per_sec_per_gpu: 13.6K | global_batch_size: 1.02K | lm_loss: 11.3 | lr: 6.21e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 53.1
[default0]:07/03/2024 04:08:24 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 10 / 20 | consumed_tokens: 41.9M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 874K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 9.11 | lr: 5.74e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 16.2
[default0]:07/03/2024 04:08:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 11 / 20 | consumed_tokens: 46.1M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 8.57 | lr: 5.26e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 7.53
[default0]:07/03/2024 04:08:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 12 / 20 | consumed_tokens: 50.3M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 8.37 | lr: 4.79e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.8
[default0]:07/03/2024 04:08:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 13 / 20 | consumed_tokens: 54.5M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 8.16 | lr: 4.32e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.6
[default0]:07/03/2024 04:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 14 / 20 | consumed_tokens: 58.7M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.91 | lr: 3.84e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.4
[default0]:07/03/2024 04:08:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:52 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 15 / 20 | consumed_tokens: 62.9M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.68 | lr: 3.37e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 4.96
[default0]:07/03/2024 04:08:52 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 16 / 20 | consumed_tokens: 67.1M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 876K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.54 | lr: 2.89e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 4.96
[default0]:07/03/2024 04:08:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 17 / 20 | consumed_tokens: 71.3M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.46 | lr: 2.42e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.07
[default0]:07/03/2024 04:09:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 18 / 20 | consumed_tokens: 75.5M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.36 | lr: 1.95e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.8
[default0]:07/03/2024 04:09:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 19 / 20 | consumed_tokens: 79.7M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.23 | lr: 1.47e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 4.04
[default0]:07/03/2024 04:09:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 20 / 20 | consumed_tokens: 83.9M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.14 | lr: 1e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 3.04
W0703 04:09:47.846000 139761591097152 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-86.ec2.internal_1842940_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 04:09:47.851000 139761591097152 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-86.ec2.internal_1842940_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 04:09:47.861000 139639773333312 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-178.ec2.internal_532557_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 04:09:47.865000 139639773333312 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-178.ec2.internal_532557_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Saved 1 csv files over 1 completed logs
Processing file: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-2/profiler/ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json
Results written to /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-2/profiler.csv
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 0%| | 0.00/4.53G [00:00<?, ?B/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 0%| | 13.8M/4.53G [00:00<00:36, 123MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 1%| | 26.1M/4.53G [00:01<06:14, 12.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 1%| | 32.0M/4.53G [00:02<08:12, 9.12MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 1%| | 48.0M/4.53G [00:03<04:29, 16.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 1%|β | 64.0M/4.53G [00:03<03:38, 20.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 2%|β | 80.0M/4.53G [00:03<02:45, 26.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 2%|β | 96.0M/4.53G [00:04<02:55, 25.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 2%|β | 112M/4.53G [00:04<02:26, 30.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 3%|β | 128M/4.53G [00:05<02:13, 32.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 3%|β | 144M/4.53G [00:05<01:59, 36.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 4%|β | 160M/4.53G [00:06<01:50, 39.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 4%|β | 176M/4.53G [00:06<01:38, 44.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 4%|β | 192M/4.53G [00:06<01:33, 46.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 5%|β | 208M/4.53G [00:06<01:31, 47.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 5%|β | 224M/4.53G [00:07<01:23, 51.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 5%|β | 240M/4.53G [00:07<01:18, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 6%|β | 256M/4.53G [00:07<01:13, 58.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 6%|β | 272M/4.53G [00:08<01:19, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 6%|β | 288M/4.53G [00:08<01:16, 55.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 7%|β | 304M/4.53G [00:08<01:14, 56.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 7%|β | 320M/4.53G [00:08<01:19, 53.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 7%|β | 336M/4.53G [00:09<01:12, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 8%|β | 352M/4.53G [00:09<01:14, 56.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 8%|β | 368M/4.53G [00:09<01:05, 63.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 8%|β | 384M/4.53G [00:09<01:08, 60.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 9%|β | 400M/4.53G [00:10<01:10, 58.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 9%|β | 416M/4.53G [00:12<03:13, 21.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 10%|β | 432M/4.53G [00:12<02:43, 25.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 10%|β | 448M/4.53G [00:12<02:16, 29.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 10%|β | 464M/4.53G [00:13<01:58, 34.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 11%|β | 480M/4.53G [00:13<01:46, 38.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 11%|β | 496M/4.53G [00:13<01:35, 42.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 11%|ββ | 512M/4.53G [00:13<01:24, 47.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 12%|ββ | 528M/4.53G [00:14<01:16, 52.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 12%|ββ | 544M/4.53G [00:14<01:20, 49.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 12%|ββ | 560M/4.53G [00:14<01:16, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 13%|ββ | 576M/4.53G [00:15<01:13, 54.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 13%|ββ | 592M/4.53G [00:15<01:07, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 13%|ββ | 608M/4.53G [00:15<01:05, 60.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 14%|ββ | 624M/4.53G [00:15<01:07, 58.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 14%|ββ | 640M/4.53G [00:16<01:05, 59.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 14%|ββ | 656M/4.53G [00:16<01:09, 55.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 15%|ββ | 672M/4.53G [00:16<01:14, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 15%|ββ | 688M/4.53G [00:16<01:10, 54.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 16%|ββ | 704M/4.53G [00:17<01:07, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 16%|ββ | 720M/4.53G [00:17<01:19, 47.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 16%|ββ | 736M/4.53G [00:17<01:16, 49.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 17%|ββ | 752M/4.53G [00:18<01:13, 51.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 17%|ββ | 768M/4.53G [00:18<01:10, 53.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 17%|ββ | 784M/4.53G [00:18<01:03, 58.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 18%|ββ | 800M/4.53G [00:19<01:01, 61.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 18%|ββ | 816M/4.53G [00:19<00:56, 65.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 18%|ββ | 832M/4.53G [00:19<00:59, 61.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 19%|ββ | 848M/4.53G [00:19<00:54, 67.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 19%|ββ | 864M/4.53G [00:19<00:52, 69.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 19%|ββ | 880M/4.53G [00:20<01:04, 56.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 20%|ββ | 896M/4.53G [00:20<01:08, 52.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 20%|ββ | 912M/4.53G [00:20<01:06, 54.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 20%|ββ | 928M/4.53G [00:21<01:12, 49.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 21%|ββ | 944M/4.53G [00:22<01:39, 36.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 21%|ββ | 960M/4.53G [00:22<01:22, 43.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 22%|βββ | 976M/4.53G [00:22<01:27, 40.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 22%|βββ | 992M/4.53G [00:22<01:21, 43.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 22%|βββ | 1.01G/4.53G [00:23<01:12, 48.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 23%|βββ | 1.02G/4.53G [00:23<01:08, 51.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 23%|βββ | 1.04G/4.53G [00:23<01:03, 54.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 23%|βββ | 1.06G/4.53G [00:24<01:01, 56.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 24%|βββ | 1.07G/4.53G [00:24<00:56, 60.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 24%|βββ | 1.09G/4.53G [00:24<01:06, 51.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 24%|βββ | 1.10G/4.53G [00:25<01:11, 47.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 25%|βββ | 1.12G/4.53G [00:25<01:08, 49.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 25%|βββ | 1.14G/4.53G [00:25<01:12, 47.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 25%|βββ | 1.15G/4.53G [00:26<01:10, 48.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 26%|βββ | 1.17G/4.53G [00:26<01:03, 52.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 26%|βββ | 1.18G/4.53G [00:26<01:20, 41.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 27%|βββ | 1.20G/4.53G [00:27<01:09, 48.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 27%|βββ | 1.22G/4.53G [00:27<00:59, 55.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 27%|βββ | 1.23G/4.53G [00:27<00:57, 57.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 28%|βββ | 1.25G/4.53G [00:27<00:52, 62.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 28%|βββ | 1.26G/4.53G [00:27<00:52, 62.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 28%|βββ | 1.28G/4.53G [00:28<00:54, 60.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 29%|βββ | 1.30G/4.53G [00:28<00:58, 54.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 29%|βββ | 1.31G/4.53G [00:28<01:03, 50.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 29%|βββ | 1.33G/4.53G [00:29<00:55, 57.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 30%|βββ | 1.34G/4.53G [00:29<00:51, 62.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 30%|βββ | 1.36G/4.53G [00:29<00:49, 64.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 30%|βββ | 1.38G/4.53G [00:29<00:49, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 31%|βββ | 1.39G/4.53G [00:30<00:50, 61.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 31%|βββ | 1.41G/4.53G [00:30<00:47, 65.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 31%|ββββ | 1.42G/4.53G [00:30<00:44, 70.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 32%|ββββ | 1.44G/4.53G [00:30<00:51, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 32%|ββββ | 1.46G/4.53G [00:31<00:58, 52.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 33%|ββββ | 1.47G/4.53G [00:31<00:53, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 33%|ββββ | 1.49G/4.53G [00:31<00:51, 59.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 33%|ββββ | 1.50G/4.53G [00:31<00:47, 64.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 34%|ββββ | 1.52G/4.53G [00:32<00:45, 66.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 34%|ββββ | 1.54G/4.53G [00:32<00:44, 66.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 34%|ββββ | 1.55G/4.53G [00:32<00:53, 55.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 35%|ββββ | 1.57G/4.53G [00:33<00:49, 59.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 35%|ββββ | 1.58G/4.53G [00:33<00:57, 51.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 35%|ββββ | 1.60G/4.53G [00:33<00:54, 53.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 36%|ββββ | 1.62G/4.53G [00:34<00:58, 49.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 36%|ββββ | 1.63G/4.53G [00:34<00:53, 54.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 36%|ββββ | 1.65G/4.53G [00:34<00:50, 57.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 37%|ββββ | 1.66G/4.53G [00:34<00:49, 58.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 37%|ββββ | 1.68G/4.53G [00:35<00:50, 56.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 37%|ββββ | 1.70G/4.53G [00:35<00:50, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 38%|ββββ | 1.71G/4.53G [00:35<00:50, 55.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 38%|ββββ | 1.73G/4.53G [00:35<00:46, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 39%|ββββ | 1.74G/4.53G [00:36<00:45, 61.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 39%|ββββ | 1.76G/4.53G [00:36<00:48, 57.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 39%|ββββ | 1.78G/4.53G [00:36<00:45, 60.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 40%|ββββ | 1.79G/4.53G [00:37<00:52, 52.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 40%|ββββ | 1.81G/4.53G [00:37<01:02, 43.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 40%|ββββ | 1.82G/4.53G [00:37<00:54, 49.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 41%|ββββ | 1.84G/4.53G [00:38<00:48, 54.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 41%|ββββ | 1.86G/4.53G [00:38<00:50, 52.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 41%|βββββ | 1.87G/4.53G [00:38<00:51, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 42%|βββββ | 1.89G/4.53G [00:39<00:48, 54.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 42%|βββββ | 1.90G/4.53G [00:39<00:44, 58.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 42%|βββββ | 1.92G/4.53G [00:39<00:56, 45.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 43%|βββββ | 1.94G/4.53G [00:39<00:50, 51.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 43%|βββββ | 1.95G/4.53G [00:40<00:48, 52.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 43%|βββββ | 1.97G/4.53G [00:40<00:53, 47.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 44%|βββββ | 1.98G/4.53G [00:40<00:46, 54.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 44%|βββββ | 2.00G/4.53G [00:41<00:45, 55.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 45%|βββββ | 2.02G/4.53G [00:41<00:53, 47.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 45%|βββββ | 2.03G/4.53G [00:41<00:49, 50.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 45%|βββββ | 2.05G/4.53G [00:42<00:46, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 46%|βββββ | 2.06G/4.53G [00:42<00:49, 49.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 46%|βββββ | 2.08G/4.53G [00:42<00:49, 49.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 46%|βββββ | 2.10G/4.53G [00:43<00:48, 50.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 47%|βββββ | 2.11G/4.53G [00:43<00:46, 51.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 47%|βββββ | 2.13G/4.53G [00:43<00:44, 54.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 47%|βββββ | 2.14G/4.53G [00:43<00:40, 58.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 48%|βββββ | 2.16G/4.53G [00:44<00:39, 60.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 48%|βββββ | 2.18G/4.53G [00:44<00:36, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 48%|βββββ | 2.19G/4.53G [00:44<00:35, 65.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 49%|βββββ | 2.21G/4.53G [00:44<00:35, 64.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 49%|βββββ | 2.22G/4.53G [00:45<00:36, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 49%|βββββ | 2.24G/4.53G [00:45<00:35, 65.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 50%|βββββ | 2.26G/4.53G [00:45<00:44, 50.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 50%|βββββ | 2.27G/4.53G [00:46<00:45, 49.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 51%|βββββ | 2.29G/4.53G [00:46<00:44, 50.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 51%|βββββ | 2.30G/4.53G [00:46<00:38, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 51%|βββββ | 2.32G/4.53G [00:46<00:36, 61.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 52%|ββββββ | 2.34G/4.53G [00:47<00:37, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 52%|ββββββ | 2.35G/4.53G [00:47<00:41, 52.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 52%|ββββββ | 2.37G/4.53G [00:47<00:41, 51.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 53%|ββββββ | 2.38G/4.53G [00:48<00:42, 50.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 53%|ββββββ | 2.40G/4.53G [00:48<00:41, 51.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 53%|ββββββ | 2.42G/4.53G [00:48<00:38, 55.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 54%|ββββββ | 2.43G/4.53G [00:48<00:35, 58.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 54%|ββββββ | 2.45G/4.53G [00:49<00:37, 55.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 54%|ββββββ | 2.46G/4.53G [00:49<00:38, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 55%|ββββββ | 2.48G/4.53G [00:49<00:35, 58.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 55%|ββββββ | 2.50G/4.53G [00:50<00:36, 55.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 55%|ββββββ | 2.51G/4.53G [00:50<00:42, 47.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 56%|ββββββ | 2.53G/4.53G [00:51<00:48, 41.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 56%|ββββββ | 2.54G/4.53G [00:51<01:00, 32.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 57%|ββββββ | 2.56G/4.53G [00:52<00:51, 38.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 57%|ββββββ | 2.58G/4.53G [00:52<00:44, 43.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 57%|ββββββ | 2.59G/4.53G [00:52<00:41, 46.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 58%|ββββββ | 2.61G/4.53G [00:52<00:37, 51.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 58%|ββββββ | 2.62G/4.53G [00:53<00:34, 54.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 58%|ββββββ | 2.64G/4.53G [00:53<00:31, 59.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 59%|ββββββ | 2.66G/4.53G [00:53<00:30, 60.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 59%|ββββββ | 2.67G/4.53G [00:53<00:27, 67.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 59%|ββββββ | 2.69G/4.53G [00:53<00:26, 68.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 60%|ββββββ | 2.70G/4.53G [00:54<00:27, 66.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 60%|ββββββ | 2.72G/4.53G [00:54<00:28, 64.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 60%|ββββββ | 2.74G/4.53G [00:54<00:29, 61.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 61%|ββββββ | 2.75G/4.53G [00:55<00:29, 60.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 61%|ββββββ | 2.77G/4.53G [00:55<00:30, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 61%|βββββββ | 2.78G/4.53G [00:55<00:30, 56.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 62%|βββββββ | 2.80G/4.53G [00:56<00:32, 52.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 62%|βββββββ | 2.82G/4.53G [00:56<00:30, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 63%|βββββββ | 2.83G/4.53G [00:56<00:33, 50.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 63%|βββββββ | 2.85G/4.53G [00:57<00:34, 49.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 63%|βββββββ | 2.86G/4.53G [00:57<00:30, 54.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 64%|βββββββ | 2.88G/4.53G [00:57<00:43, 38.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 64%|βββββββ | 2.90G/4.53G [00:58<00:40, 40.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 64%|βββββββ | 2.91G/4.53G [00:58<00:37, 42.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 65%|βββββββ | 2.93G/4.53G [00:58<00:33, 47.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 65%|βββββββ | 2.94G/4.53G [00:59<00:29, 54.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 65%|βββββββ | 2.96G/4.53G [00:59<00:27, 57.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 66%|βββββββ | 2.98G/4.53G [00:59<00:27, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 66%|βββββββ | 2.99G/4.53G [00:59<00:27, 56.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 66%|βββββββ | 3.01G/4.53G [01:00<00:25, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 67%|βββββββ | 3.02G/4.53G [01:00<00:22, 66.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 67%|βββββββ | 3.04G/4.53G [01:00<00:22, 66.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 67%|βββββββ | 3.06G/4.53G [01:00<00:23, 63.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 68%|βββββββ | 3.07G/4.53G [01:01<00:38, 38.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 68%|βββββββ | 3.09G/4.53G [01:02<00:37, 38.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 69%|βββββββ | 3.10G/4.53G [01:02<00:32, 44.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 69%|βββββββ | 3.12G/4.53G [01:02<00:28, 48.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 69%|βββββββ | 3.14G/4.53G [01:02<00:26, 52.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 70%|βββββββ | 3.15G/4.53G [01:03<00:25, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 70%|βββββββ | 3.17G/4.53G [01:03<00:25, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 70%|βββββββ | 3.18G/4.53G [01:03<00:25, 52.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 71%|βββββββ | 3.20G/4.53G [01:03<00:24, 55.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 71%|βββββββ | 3.22G/4.53G [01:04<00:23, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 71%|ββββββββ | 3.23G/4.53G [01:04<00:23, 55.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 72%|ββββββββ | 3.25G/4.53G [01:04<00:22, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 72%|ββββββββ | 3.26G/4.53G [01:05<00:22, 56.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 72%|ββββββββ | 3.28G/4.53G [01:05<00:22, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 73%|ββββββββ | 3.30G/4.53G [01:05<00:23, 53.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 73%|ββββββββ | 3.31G/4.53G [01:05<00:20, 58.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 74%|ββββββββ | 3.33G/4.53G [01:06<00:20, 57.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 74%|ββββββββ | 3.34G/4.53G [01:06<00:22, 53.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 74%|ββββββββ | 3.36G/4.53G [01:06<00:20, 57.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 75%|ββββββββ | 3.38G/4.53G [01:06<00:18, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 75%|ββββββββ | 3.39G/4.53G [01:07<00:17, 64.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 75%|ββββββββ | 3.41G/4.53G [01:07<00:16, 67.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 76%|ββββββββ | 3.42G/4.53G [01:07<00:14, 74.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 76%|ββββββββ | 3.44G/4.53G [01:07<00:15, 69.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 76%|ββββββββ | 3.46G/4.53G [01:08<00:16, 65.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 77%|ββββββββ | 3.47G/4.53G [01:08<00:25, 42.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 77%|ββββββββ | 3.49G/4.53G [01:09<00:21, 47.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 77%|ββββββββ | 3.50G/4.53G [01:09<00:18, 55.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 78%|ββββββββ | 3.52G/4.53G [01:09<00:18, 54.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 78%|ββββββββ | 3.54G/4.53G [01:10<00:22, 45.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 78%|ββββββββ | 3.55G/4.53G [01:10<00:18, 51.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 79%|ββββββββ | 3.57G/4.53G [01:10<00:17, 53.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 79%|ββββββββ | 3.58G/4.53G [01:11<00:26, 36.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 80%|ββββββββ | 3.60G/4.53G [01:11<00:23, 38.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 80%|ββββββββ | 3.62G/4.53G [01:11<00:20, 45.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 80%|ββββββββ | 3.63G/4.53G [01:12<00:18, 48.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 81%|ββββββββ | 3.65G/4.53G [01:12<00:16, 53.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 81%|ββββββββ | 3.66G/4.53G [01:12<00:16, 53.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 81%|βββββββββ | 3.68G/4.53G [01:12<00:15, 54.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 82%|βββββββββ | 3.70G/4.53G [01:13<00:15, 52.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 82%|βββββββββ | 3.71G/4.53G [01:13<00:16, 49.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 82%|βββββββββ | 3.73G/4.53G [01:13<00:16, 49.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 83%|βββββββββ | 3.74G/4.53G [01:14<00:14, 54.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 83%|βββββββββ | 3.76G/4.53G [01:14<00:13, 57.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 83%|βββββββββ | 3.78G/4.53G [01:14<00:13, 55.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 84%|βββββββββ | 3.79G/4.53G [01:15<00:13, 52.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 84%|βββββββββ | 3.81G/4.53G [01:15<00:12, 56.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 84%|βββββββββ | 3.82G/4.53G [01:15<00:12, 57.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 85%|βββββββββ | 3.84G/4.53G [01:15<00:10, 62.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 85%|βββββββββ | 3.86G/4.53G [01:16<00:10, 63.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 86%|βββββββββ | 3.87G/4.53G [01:16<00:10, 62.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 86%|βββββββββ | 3.89G/4.53G [01:16<00:09, 66.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 86%|βββββββββ | 3.90G/4.53G [01:16<00:09, 63.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 87%|βββββββββ | 3.92G/4.53G [01:17<00:10, 58.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 87%|βββββββββ | 3.94G/4.53G [01:17<00:09, 59.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 87%|βββββββββ | 3.95G/4.53G [01:17<00:09, 59.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 88%|βββββββββ | 3.97G/4.53G [01:17<00:09, 61.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 88%|βββββββββ | 3.98G/4.53G [01:18<00:10, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 88%|βββββββββ | 4.00G/4.53G [01:18<00:09, 55.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 89%|βββββββββ | 4.02G/4.53G [01:18<00:08, 56.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 89%|βββββββββ | 4.03G/4.53G [01:18<00:08, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 89%|βββββββββ | 4.05G/4.53G [01:19<00:08, 59.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 90%|βββββββββ | 4.06G/4.53G [01:19<00:07, 62.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 90%|βββββββββ | 4.08G/4.53G [01:20<00:12, 34.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 90%|βββββββββ | 4.10G/4.53G [01:20<00:10, 40.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 91%|βββββββββ | 4.11G/4.53G [01:20<00:08, 46.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 91%|βββββββββ | 4.13G/4.53G [01:21<00:09, 44.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 92%|ββββββββββ| 4.14G/4.53G [01:21<00:08, 47.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 92%|ββββββββββ| 4.16G/4.53G [01:21<00:07, 47.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 92%|ββββββββββ| 4.18G/4.53G [01:22<00:07, 44.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 93%|ββββββββββ| 4.19G/4.53G [01:22<00:06, 47.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 93%|ββββββββββ| 4.21G/4.53G [01:22<00:05, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 93%|ββββββββββ| 4.22G/4.53G [01:23<00:05, 51.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 94%|ββββββββββ| 4.24G/4.53G [01:23<00:05, 54.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 94%|ββββββββββ| 4.26G/4.53G [01:23<00:04, 59.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 94%|ββββββββββ| 4.27G/4.53G [01:23<00:04, 61.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 95%|ββββββββββ| 4.29G/4.53G [01:24<00:04, 56.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 95%|ββββββββββ| 4.30G/4.53G [01:24<00:03, 62.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 95%|ββββββββββ| 4.32G/4.53G [01:24<00:03, 62.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 96%|ββββββββββ| 4.34G/4.53G [01:24<00:03, 62.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 96%|ββββββββββ| 4.35G/4.53G [01:25<00:02, 63.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 96%|ββββββββββ| 4.37G/4.53G [01:25<00:02, 58.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 97%|ββββββββββ| 4.38G/4.53G [01:25<00:02, 61.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 97%|ββββββββββ| 4.40G/4.53G [01:26<00:02, 57.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 98%|ββββββββββ| 4.42G/4.53G [01:26<00:01, 57.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 98%|ββββββββββ| 4.43G/4.53G [01:26<00:01, 54.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 98%|ββββββββββ| 4.45G/4.53G [01:26<00:01, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 99%|ββββββββββ| 4.46G/4.53G [01:27<00:01, 58.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 99%|ββββββββββ| 4.48G/4.53G [01:27<00:00, 59.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 99%|ββββββββββ| 4.50G/4.53G [01:27<00:00, 58.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 100%|ββββββββββ| 4.51G/4.53G [01:27<00:00, 61.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 100%|ββββββββββ| 4.53G/4.53G [01:28<00:00, 51.4MB/s]
|