File size: 177,870 Bytes
33ea874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
========================
START TIME: Wed Jul  3 04:03:49 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M	examples/config_tiny_llama.py
M	examples/config_tiny_llama.yaml
M	examples/train_tiny_llama.sh
M	src/nanotron/models/llama.py
M	src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] 
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] *****************************************
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:54.924000 139838662874944 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] 
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:55.749000 140451006445376 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] 
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:55.846000 139761591097152 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] 
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:55.865000 140709875398464 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] 
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] *****************************************
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:55.922000 139943634851648 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] 
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:56.067000 140544874116928 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] 
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:56.117000 139834290403136 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] 
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] *****************************************
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
W0703 04:03:56.263000 139639773333312 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 04:04:21 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Vocab Size Padding] Padded vocab (size: 50257) with 3 dummy tokens (new size: 50260)
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config:
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            run='%date_%jobid',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            seed=42,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            step=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            consumed_train_samples=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            benchmark_csv_path=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            ignore_sanity_checks=True),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        parallelism=ParallelismArgs(dp=16,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    pp=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    tp=4,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f30e95588b0>,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    tp_linear_async_communication=False,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    expert_parallel_size=1),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 eos_token_id=2,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 hidden_act='silu',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 hidden_size=2048,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 initializer_range=0.02,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 intermediate_size=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 is_llama_config=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 max_position_embeddings=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 num_attention_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 num_hidden_layers=24,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 num_key_value_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 pad_token_id=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 pretraining_tp=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 rms_norm_eps=1e-05,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 rope_scaling=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 rope_theta=10000.0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 tie_word_embeddings=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 use_cache=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                 vocab_size=50260),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                        init_method=RandomInit(std=0.025),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                        dtype=torch.bfloat16,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                        make_vocab_size_divisible_by=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                        ddp_bucket_cap_mb=25),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                tokenizer_revision=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                tokenizer_max_length=None),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    checkpoint_interval=100000,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    save_initial_state=False,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    resume_checkpoint_path=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                    checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            log_level_replica='info',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                            iteration_step_info_interval=1),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                          train_steps=20,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                          micro_batch_size=2,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                          batch_accumulation_per_replica=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                          val_check_interval=-1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                          limit_val_batches=0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                          limit_test_batches=0),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                     adam_beta1=0.9,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                     adam_beta2=0.95,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                     torch_adam_is_fused=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                     name='adamW'),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                zero_stage=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                weight_decay=0.01,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                clip_grad=1.0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                accumulate_grad_in_fp32=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                        lr_warmup_steps=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                        lr_warmup_style='linear',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                        lr_decay_style='linear',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                        lr_decay_steps=19,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                        lr_decay_starting_step=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                        min_decay_lr=1e-05)),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                      start_training_step=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                      data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                                 hf_dataset_splits='train',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                                 hf_dataset_config_name=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                                 dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                                 dataset_overwrite_cache=False,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                                                 text_column_name='text'),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                    seed=42,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:                                                    num_loading_workers=0))],
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-2')),
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:        lighteval=None)
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Model Config:
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             eos_token_id=2,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             hidden_act='silu',
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             hidden_size=2048,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             initializer_range=0.02,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             intermediate_size=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             is_llama_config=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             max_position_embeddings=4096,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             num_attention_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             num_hidden_layers=24,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             num_key_value_heads=32,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             pad_token_id=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             pretraining_tp=1,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             rms_norm_eps=1e-05,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             rope_scaling=None,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             rope_theta=10000.0,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             tie_word_embeddings=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             use_cache=True,
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:             vocab_size=50260)
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Building model..
[default0]:07/03/2024 04:04:21 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Setting PP block ranks...
[default2]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default2]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default2]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default1]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Total number of parameters: 1.11G (2117.09MiB)
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Local number of parameters: 277M (529.27MiB)
[default1]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: [After model building] Memory usage: 554.21MiB. Peak allocated: 606.24MiB Peak reserved: 608.00MiB
[default3]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Parametrizing model parameters using StandardParametrizator
[default7]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=3|ip-26-0-172-57]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=0|ip-26-0-172-57]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=1|ip-26-0-172-57]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=3|ip-26-0-172-57]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=2|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=1|ip-26-0-172-57]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=13|PP=0|TP=0|ip-26-0-172-57]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=12|PP=0|TP=2|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=1|ip-26-0-163-220]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=0|ip-26-0-163-226]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=3|ip-26-0-163-220]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=3|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=0|ip-26-0-163-220]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=0|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=2|ip-26-0-163-220]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=2|ip-26-0-163-226]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=0|ip-26-0-163-226]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=1|ip-26-0-163-226]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=2|ip-26-0-163-226]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=6|PP=0|TP=3|ip-26-0-163-226]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=3|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=1|ip-26-0-163-226]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=4|PP=0|TP=2|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=1|ip-26-0-163-220]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=5|PP=0|TP=0|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=3|PP=0|TP=1|ip-26-0-161-178]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=2|PP=0|TP=2|ip-26-0-161-178]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=1|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=7|PP=0|TP=3|ip-26-0-163-226]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=2|ip-26-0-172-73]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=3|ip-26-0-172-73]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=1|ip-26-0-160-192]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=2|ip-26-0-160-192]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=0|ip-26-0-172-73]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=0|ip-26-0-160-192]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=2|ip-26-0-172-73]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=14|PP=0|TP=0|ip-26-0-172-73]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=1|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=15|PP=0|TP=3|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=1|PP=0|TP=3|ip-26-0-160-192]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=3|ip-26-0-169-86]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=0|ip-26-0-169-86]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=1|ip-26-0-169-86]: No checkpoint path provided.
[default1]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=1|ip-26-0-168-238]: No checkpoint path provided.
[default0]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=0|ip-26-0-168-238]: No checkpoint path provided.
[default3]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=3|ip-26-0-168-238]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=8|PP=0|TP=2|ip-26-0-168-238]: No checkpoint path provided.
[default2]:07/03/2024 04:04:36 [INFO|DP=10|PP=0|TP=2|ip-26-0-169-86]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=2|ip-26-0-169-86]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=0|ip-26-0-168-238]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=1|ip-26-0-168-238]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=3|ip-26-0-168-238]: No checkpoint path provided.
[default6]:07/03/2024 04:04:36 [INFO|DP=9|PP=0|TP=2|ip-26-0-168-238]: No checkpoint path provided.
[default7]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=3|ip-26-0-169-86]: No checkpoint path provided.
[default5]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=1|ip-26-0-169-86]: No checkpoint path provided.
[default4]:07/03/2024 04:04:36 [INFO|DP=11|PP=0|TP=0|ip-26-0-169-86]: No checkpoint path provided.
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 0 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 1 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 2 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 3 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 4 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 5 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 6 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 7 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 8 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 9 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 10 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 11 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 12 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 13 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 14 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:39 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 15 has 17.3M out of 277M (6.25%) params' optimizer states
[default0]:07/03/2024 04:04:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 04:04:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Using `datasets` library
[default0]:07/03/2024 04:04:41 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 04:04:41 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] There are 1 training stages 
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Stage Training Stage] start from step 1 
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: 
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Start training] datetime: 2024-07-03 04:04:43.925243 | mbs: 2 | grad_accum: 32 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 04:04:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1678.92MiB. Peak allocated 1678.92MiB. Peak reserved: 1736.00MiB
[default1]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=0|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=3|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=1|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=0|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=0|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=3|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=2|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=1|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=3|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=1|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=2|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=1|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=2|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=2|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=1|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=0|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=3|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=2|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=3|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=1|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=1|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=0|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=1|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=1|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=2|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=0|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=0|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=2|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=1|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=0|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=2|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=1|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=13|PP=0|TP=3|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=12|PP=0|TP=3|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=2|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=6|PP=0|TP=2|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=7|PP=0|TP=0|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=4|PP=0|TP=3|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=1|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=2|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=5|PP=0|TP=0|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=1|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=3|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=2|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=10|PP=0|TP=0|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=0|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=2|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 04:04:44 [WARNING|DP=14|PP=0|TP=0|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=1|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 04:04:44 [WARNING|DP=8|PP=0|TP=2|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=15|PP=0|TP=3|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=11|PP=0|TP=3|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=1|PP=0|TP=3|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 04:04:44 [WARNING|DP=2|PP=0|TP=3|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 04:04:44 [WARNING|DP=3|PP=0|TP=0|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 04:04:44 [WARNING|DP=9|PP=0|TP=3|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default5]:07/03/2024 04:04:54 [WARNING|DP=13|PP=0|TP=1|ip-26-0-172-57]: Using the latest cached version of the dataset since roneneldan/TinyStories couldn't be found on the Hugging Face Hub
[default5]:07/03/2024 04:04:54 [WARNING|DP=13|PP=0|TP=1|ip-26-0-172-57]: Found the latest cached dataset configuration 'default' at /admin/home/ferdinand_mom/.cache/roneneldan___tiny_stories/default/0.0.0/691b0d9bd48ade766778c940011ca1c549f6359b (last modified on Mon Jun 24 07:59:52 2024).
[default5]:Using the latest cached version of the dataset since roneneldan/TinyStories couldn't be found on the Hugging Face Hub
[default5]:Found the latest cached dataset configuration 'default' at /admin/home/ferdinand_mom/.cache/roneneldan___tiny_stories/default/0.0.0/691b0d9bd48ade766778c940011ca1c549f6359b (last modified on Mon Jun 24 07:59:52 2024).
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default0]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]:  return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default0]:07/03/2024 04:04:59 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1755.07MiB. Peak allocated 7387.23MiB. Peak reserved: 8068.00MiB
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default2]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default0]:  warnings.warn(
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default3]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default1]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default4]:  warnings.warn(
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default5]:  warnings.warn(
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default7]:  warnings.warn(
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py:2261: UserWarning: torch.distributed.all_reduce_coalesced will be deprecated. If you must use it, please revisit our documentation later at https://pytorch.org/docs/master/distributed.html#collective-functions
[default6]:  warnings.warn(
[default0]:07/03/2024 04:05:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 1 / 20 | consumed_tokens: 4.19M | elapsed_time_per_iteration_ms: 19.4K | tokens_per_sec: 216K | tokens_per_sec_per_gpu: 3.38K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 0.0001 | model_tflops_per_gpu: 30.6 | hardware_tflops_per_gpu: 30.6 | grad_norm: 20.6 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:03 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 2979.82MiB. Peak reserved: 8712.00MiB
[default0]:07/03/2024 04:05:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.48MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 2 / 20 | consumed_tokens: 8.39M | elapsed_time_per_iteration_ms: 5.39K | tokens_per_sec: 778K | tokens_per_sec_per_gpu: 12.2K | global_batch_size: 1.02K | lm_loss: 11.4 | lr: 9.53e-05 | model_tflops_per_gpu: 110 | hardware_tflops_per_gpu: 110 | grad_norm: 20.7 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:08 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 2979.83MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:13 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.48MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 3 / 20 | consumed_tokens: 12.6M | elapsed_time_per_iteration_ms: 5.29K | tokens_per_sec: 792K | tokens_per_sec_per_gpu: 12.4K | global_batch_size: 1.02K | lm_loss: 11.6 | lr: 9.05e-05 | model_tflops_per_gpu: 112 | hardware_tflops_per_gpu: 112 | grad_norm: 194 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 2979.83MiB. Peak reserved: 8718.00MiB
[default0]:STAGE:2024-07-03 04:05:14 1146591:1146591 ActivityProfilerController.cpp:314] Completed Stage: Warm Up
[default0]:07/03/2024 04:05:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.48MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 4 / 20 | consumed_tokens: 16.8M | elapsed_time_per_iteration_ms: 6.92K | tokens_per_sec: 606K | tokens_per_sec_per_gpu: 9.47K | global_batch_size: 1.02K | lm_loss: 13.6 | lr: 8.58e-05 | model_tflops_per_gpu: 86 | hardware_tflops_per_gpu: 86 | grad_norm: 28 | cuda_memory_allocated: 1.98G | cuda_max_memory_reserved: 9.14G | hd_total_memory_tb: 312G | hd_used_memory_tb: 74G | hd_free_memory_tb: 238G
[default0]:07/03/2024 04:05:20 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 2979.83MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 5 / 20 | consumed_tokens: 21M | elapsed_time_per_iteration_ms: 6.96K | tokens_per_sec: 602K | tokens_per_sec_per_gpu: 9.41K | global_batch_size: 1.02K | lm_loss: 12 | lr: 8.11e-05 | model_tflops_per_gpu: 85.4 | hardware_tflops_per_gpu: 85.4 | grad_norm: 48.9
[default0]:07/03/2024 04:05:27 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:05:34 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 6 / 20 | consumed_tokens: 25.2M | elapsed_time_per_iteration_ms: 6.91K | tokens_per_sec: 607K | tokens_per_sec_per_gpu: 9.48K | global_batch_size: 1.02K | lm_loss: 10.9 | lr: 7.63e-05 | model_tflops_per_gpu: 86 | hardware_tflops_per_gpu: 86 | grad_norm: 19.8
[default0]:STAGE:2024-07-03 04:05:52 1146591:1146591 ActivityProfilerController.cpp:320] Completed Stage: Collection
[default0]:STAGE:2024-07-03 04:05:54 1146591:1146591 ActivityProfilerController.cpp:324] Completed Stage: Post Processing
[default0]:07/03/2024 04:08:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 7 / 20 | consumed_tokens: 29.4M | elapsed_time_per_iteration_ms: 4.81K | tokens_per_sec: 871K | tokens_per_sec_per_gpu: 13.6K | global_batch_size: 1.02K | lm_loss: 10.4 | lr: 7.16e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 8.62
[default0]:07/03/2024 04:08:14 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 8 / 20 | consumed_tokens: 33.6M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 873K | tokens_per_sec_per_gpu: 13.6K | global_batch_size: 1.02K | lm_loss: 9.66 | lr: 6.68e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 6.89
[default0]:07/03/2024 04:08:19 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:24 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 9 / 20 | consumed_tokens: 37.7M | elapsed_time_per_iteration_ms: 4.81K | tokens_per_sec: 873K | tokens_per_sec_per_gpu: 13.6K | global_batch_size: 1.02K | lm_loss: 11.3 | lr: 6.21e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 53.1
[default0]:07/03/2024 04:08:24 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 10 / 20 | consumed_tokens: 41.9M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 874K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 9.11 | lr: 5.74e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 16.2
[default0]:07/03/2024 04:08:29 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 11 / 20 | consumed_tokens: 46.1M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 8.57 | lr: 5.26e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 7.53
[default0]:07/03/2024 04:08:33 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 12 / 20 | consumed_tokens: 50.3M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 8.37 | lr: 4.79e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.8
[default0]:07/03/2024 04:08:38 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 13 / 20 | consumed_tokens: 54.5M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 8.16 | lr: 4.32e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.6
[default0]:07/03/2024 04:08:43 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 14 / 20 | consumed_tokens: 58.7M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.91 | lr: 3.84e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.4
[default0]:07/03/2024 04:08:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:52 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 15 / 20 | consumed_tokens: 62.9M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.68 | lr: 3.37e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 4.96
[default0]:07/03/2024 04:08:52 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:08:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 16 / 20 | consumed_tokens: 67.1M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 876K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.54 | lr: 2.89e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 4.96
[default0]:07/03/2024 04:08:57 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 17 / 20 | consumed_tokens: 71.3M | elapsed_time_per_iteration_ms: 4.8K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.46 | lr: 2.42e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.07
[default0]:07/03/2024 04:09:02 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 18 / 20 | consumed_tokens: 75.5M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.36 | lr: 1.95e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 5.8
[default0]:07/03/2024 04:09:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 19 / 20 | consumed_tokens: 79.7M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.23 | lr: 1.47e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 4.04
[default0]:07/03/2024 04:09:12 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:  Memory usage: 1887.46MiB. Peak allocated 7519.63MiB. Peak reserved: 8718.00MiB
[default0]:07/03/2024 04:09:16 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration: 20 / 20 | consumed_tokens: 83.9M | elapsed_time_per_iteration_ms: 4.79K | tokens_per_sec: 875K | tokens_per_sec_per_gpu: 13.7K | global_batch_size: 1.02K | lm_loss: 7.14 | lr: 1e-05 | model_tflops_per_gpu: 124 | hardware_tflops_per_gpu: 124 | grad_norm: 3.04
W0703 04:09:47.846000 139761591097152 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-86.ec2.internal_1842940_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 04:09:47.851000 139761591097152 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-86.ec2.internal_1842940_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 04:09:47.861000 139639773333312 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-178.ec2.internal_532557_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 04:09:47.865000 139639773333312 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-161-178.ec2.internal_532557_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Saved 1 csv files over 1 completed logs
Processing file: /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-2/profiler/ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json
Results written to /fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-16_tp-4_pp-1_mbz-2/profiler.csv
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.

ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   0%|          | 0.00/4.53G [00:00<?, ?B/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   0%|          | 13.8M/4.53G [00:00<00:36, 123MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   1%|          | 26.1M/4.53G [00:01<06:14, 12.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   1%|          | 32.0M/4.53G [00:02<08:12, 9.12MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   1%|          | 48.0M/4.53G [00:03<04:29, 16.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   1%|▏         | 64.0M/4.53G [00:03<03:38, 20.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   2%|▏         | 80.0M/4.53G [00:03<02:45, 26.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   2%|▏         | 96.0M/4.53G [00:04<02:55, 25.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   2%|▏         | 112M/4.53G [00:04<02:26, 30.2MB/s] 
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   3%|β–Ž         | 128M/4.53G [00:05<02:13, 32.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   3%|β–Ž         | 144M/4.53G [00:05<01:59, 36.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   4%|β–Ž         | 160M/4.53G [00:06<01:50, 39.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   4%|▍         | 176M/4.53G [00:06<01:38, 44.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   4%|▍         | 192M/4.53G [00:06<01:33, 46.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   5%|▍         | 208M/4.53G [00:06<01:31, 47.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   5%|▍         | 224M/4.53G [00:07<01:23, 51.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   5%|β–Œ         | 240M/4.53G [00:07<01:18, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   6%|β–Œ         | 256M/4.53G [00:07<01:13, 58.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   6%|β–Œ         | 272M/4.53G [00:08<01:19, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   6%|β–‹         | 288M/4.53G [00:08<01:16, 55.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   7%|β–‹         | 304M/4.53G [00:08<01:14, 56.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   7%|β–‹         | 320M/4.53G [00:08<01:19, 53.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   7%|β–‹         | 336M/4.53G [00:09<01:12, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   8%|β–Š         | 352M/4.53G [00:09<01:14, 56.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   8%|β–Š         | 368M/4.53G [00:09<01:05, 63.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   8%|β–Š         | 384M/4.53G [00:09<01:08, 60.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   9%|β–‰         | 400M/4.53G [00:10<01:10, 58.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:   9%|β–‰         | 416M/4.53G [00:12<03:13, 21.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  10%|β–‰         | 432M/4.53G [00:12<02:43, 25.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  10%|β–‰         | 448M/4.53G [00:12<02:16, 29.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  10%|β–ˆ         | 464M/4.53G [00:13<01:58, 34.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  11%|β–ˆ         | 480M/4.53G [00:13<01:46, 38.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  11%|β–ˆ         | 496M/4.53G [00:13<01:35, 42.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  11%|β–ˆβ–        | 512M/4.53G [00:13<01:24, 47.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  12%|β–ˆβ–        | 528M/4.53G [00:14<01:16, 52.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  12%|β–ˆβ–        | 544M/4.53G [00:14<01:20, 49.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  12%|β–ˆβ–        | 560M/4.53G [00:14<01:16, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  13%|β–ˆβ–Ž        | 576M/4.53G [00:15<01:13, 54.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  13%|β–ˆβ–Ž        | 592M/4.53G [00:15<01:07, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  13%|β–ˆβ–Ž        | 608M/4.53G [00:15<01:05, 60.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  14%|β–ˆβ–        | 624M/4.53G [00:15<01:07, 58.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  14%|β–ˆβ–        | 640M/4.53G [00:16<01:05, 59.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  14%|β–ˆβ–        | 656M/4.53G [00:16<01:09, 55.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  15%|β–ˆβ–        | 672M/4.53G [00:16<01:14, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  15%|β–ˆβ–Œ        | 688M/4.53G [00:16<01:10, 54.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  16%|β–ˆβ–Œ        | 704M/4.53G [00:17<01:07, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  16%|β–ˆβ–Œ        | 720M/4.53G [00:17<01:19, 47.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  16%|β–ˆβ–‹        | 736M/4.53G [00:17<01:16, 49.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  17%|β–ˆβ–‹        | 752M/4.53G [00:18<01:13, 51.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  17%|β–ˆβ–‹        | 768M/4.53G [00:18<01:10, 53.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  17%|β–ˆβ–‹        | 784M/4.53G [00:18<01:03, 58.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  18%|β–ˆβ–Š        | 800M/4.53G [00:19<01:01, 61.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  18%|β–ˆβ–Š        | 816M/4.53G [00:19<00:56, 65.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  18%|β–ˆβ–Š        | 832M/4.53G [00:19<00:59, 61.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  19%|β–ˆβ–Š        | 848M/4.53G [00:19<00:54, 67.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  19%|β–ˆβ–‰        | 864M/4.53G [00:19<00:52, 69.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  19%|β–ˆβ–‰        | 880M/4.53G [00:20<01:04, 56.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  20%|β–ˆβ–‰        | 896M/4.53G [00:20<01:08, 52.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  20%|β–ˆβ–ˆ        | 912M/4.53G [00:20<01:06, 54.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  20%|β–ˆβ–ˆ        | 928M/4.53G [00:21<01:12, 49.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  21%|β–ˆβ–ˆ        | 944M/4.53G [00:22<01:39, 36.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  21%|β–ˆβ–ˆ        | 960M/4.53G [00:22<01:22, 43.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  22%|β–ˆβ–ˆβ–       | 976M/4.53G [00:22<01:27, 40.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  22%|β–ˆβ–ˆβ–       | 992M/4.53G [00:22<01:21, 43.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  22%|β–ˆβ–ˆβ–       | 1.01G/4.53G [00:23<01:12, 48.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  23%|β–ˆβ–ˆβ–Ž       | 1.02G/4.53G [00:23<01:08, 51.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  23%|β–ˆβ–ˆβ–Ž       | 1.04G/4.53G [00:23<01:03, 54.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  23%|β–ˆβ–ˆβ–Ž       | 1.06G/4.53G [00:24<01:01, 56.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  24%|β–ˆβ–ˆβ–Ž       | 1.07G/4.53G [00:24<00:56, 60.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  24%|β–ˆβ–ˆβ–       | 1.09G/4.53G [00:24<01:06, 51.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  24%|β–ˆβ–ˆβ–       | 1.10G/4.53G [00:25<01:11, 47.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  25%|β–ˆβ–ˆβ–       | 1.12G/4.53G [00:25<01:08, 49.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  25%|β–ˆβ–ˆβ–Œ       | 1.14G/4.53G [00:25<01:12, 47.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  25%|β–ˆβ–ˆβ–Œ       | 1.15G/4.53G [00:26<01:10, 48.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  26%|β–ˆβ–ˆβ–Œ       | 1.17G/4.53G [00:26<01:03, 52.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  26%|β–ˆβ–ˆβ–Œ       | 1.18G/4.53G [00:26<01:20, 41.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  27%|β–ˆβ–ˆβ–‹       | 1.20G/4.53G [00:27<01:09, 48.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  27%|β–ˆβ–ˆβ–‹       | 1.22G/4.53G [00:27<00:59, 55.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  27%|β–ˆβ–ˆβ–‹       | 1.23G/4.53G [00:27<00:57, 57.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  28%|β–ˆβ–ˆβ–Š       | 1.25G/4.53G [00:27<00:52, 62.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  28%|β–ˆβ–ˆβ–Š       | 1.26G/4.53G [00:27<00:52, 62.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  28%|β–ˆβ–ˆβ–Š       | 1.28G/4.53G [00:28<00:54, 60.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  29%|β–ˆβ–ˆβ–Š       | 1.30G/4.53G [00:28<00:58, 54.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  29%|β–ˆβ–ˆβ–‰       | 1.31G/4.53G [00:28<01:03, 50.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  29%|β–ˆβ–ˆβ–‰       | 1.33G/4.53G [00:29<00:55, 57.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  30%|β–ˆβ–ˆβ–‰       | 1.34G/4.53G [00:29<00:51, 62.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  30%|β–ˆβ–ˆβ–ˆ       | 1.36G/4.53G [00:29<00:49, 64.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  30%|β–ˆβ–ˆβ–ˆ       | 1.38G/4.53G [00:29<00:49, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  31%|β–ˆβ–ˆβ–ˆ       | 1.39G/4.53G [00:30<00:50, 61.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  31%|β–ˆβ–ˆβ–ˆ       | 1.41G/4.53G [00:30<00:47, 65.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  31%|β–ˆβ–ˆβ–ˆβ–      | 1.42G/4.53G [00:30<00:44, 70.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  32%|β–ˆβ–ˆβ–ˆβ–      | 1.44G/4.53G [00:30<00:51, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  32%|β–ˆβ–ˆβ–ˆβ–      | 1.46G/4.53G [00:31<00:58, 52.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  33%|β–ˆβ–ˆβ–ˆβ–Ž      | 1.47G/4.53G [00:31<00:53, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  33%|β–ˆβ–ˆβ–ˆβ–Ž      | 1.49G/4.53G [00:31<00:51, 59.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  33%|β–ˆβ–ˆβ–ˆβ–Ž      | 1.50G/4.53G [00:31<00:47, 64.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  34%|β–ˆβ–ˆβ–ˆβ–Ž      | 1.52G/4.53G [00:32<00:45, 66.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  34%|β–ˆβ–ˆβ–ˆβ–      | 1.54G/4.53G [00:32<00:44, 66.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  34%|β–ˆβ–ˆβ–ˆβ–      | 1.55G/4.53G [00:32<00:53, 55.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  35%|β–ˆβ–ˆβ–ˆβ–      | 1.57G/4.53G [00:33<00:49, 59.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  35%|β–ˆβ–ˆβ–ˆβ–      | 1.58G/4.53G [00:33<00:57, 51.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  35%|β–ˆβ–ˆβ–ˆβ–Œ      | 1.60G/4.53G [00:33<00:54, 53.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  36%|β–ˆβ–ˆβ–ˆβ–Œ      | 1.62G/4.53G [00:34<00:58, 49.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  36%|β–ˆβ–ˆβ–ˆβ–Œ      | 1.63G/4.53G [00:34<00:53, 54.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  36%|β–ˆβ–ˆβ–ˆβ–‹      | 1.65G/4.53G [00:34<00:50, 57.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 1.66G/4.53G [00:34<00:49, 58.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 1.68G/4.53G [00:35<00:50, 56.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 1.70G/4.53G [00:35<00:50, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  38%|β–ˆβ–ˆβ–ˆβ–Š      | 1.71G/4.53G [00:35<00:50, 55.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  38%|β–ˆβ–ˆβ–ˆβ–Š      | 1.73G/4.53G [00:35<00:46, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  39%|β–ˆβ–ˆβ–ˆβ–Š      | 1.74G/4.53G [00:36<00:45, 61.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  39%|β–ˆβ–ˆβ–ˆβ–‰      | 1.76G/4.53G [00:36<00:48, 57.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  39%|β–ˆβ–ˆβ–ˆβ–‰      | 1.78G/4.53G [00:36<00:45, 60.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  40%|β–ˆβ–ˆβ–ˆβ–‰      | 1.79G/4.53G [00:37<00:52, 52.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  40%|β–ˆβ–ˆβ–ˆβ–‰      | 1.81G/4.53G [00:37<01:02, 43.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 1.82G/4.53G [00:37<00:54, 49.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 1.84G/4.53G [00:38<00:48, 54.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 1.86G/4.53G [00:38<00:50, 52.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  41%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.87G/4.53G [00:38<00:51, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.89G/4.53G [00:39<00:48, 54.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.90G/4.53G [00:39<00:44, 58.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.92G/4.53G [00:39<00:56, 45.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 1.94G/4.53G [00:39<00:50, 51.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 1.95G/4.53G [00:40<00:48, 52.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 1.97G/4.53G [00:40<00:53, 47.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 1.98G/4.53G [00:40<00:46, 54.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 2.00G/4.53G [00:41<00:45, 55.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 2.02G/4.53G [00:41<00:53, 47.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 2.03G/4.53G [00:41<00:49, 50.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 2.05G/4.53G [00:42<00:46, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 2.06G/4.53G [00:42<00:49, 49.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 2.08G/4.53G [00:42<00:49, 49.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 2.10G/4.53G [00:43<00:48, 50.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 2.11G/4.53G [00:43<00:46, 51.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 2.13G/4.53G [00:43<00:44, 54.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 2.14G/4.53G [00:43<00:40, 58.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 2.16G/4.53G [00:44<00:39, 60.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 2.18G/4.53G [00:44<00:36, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 2.19G/4.53G [00:44<00:35, 65.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 2.21G/4.53G [00:44<00:35, 64.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 2.22G/4.53G [00:45<00:36, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 2.24G/4.53G [00:45<00:35, 65.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 2.26G/4.53G [00:45<00:44, 50.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 2.27G/4.53G [00:46<00:45, 49.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 2.29G/4.53G [00:46<00:44, 50.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 2.30G/4.53G [00:46<00:38, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 2.32G/4.53G [00:46<00:36, 61.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 2.34G/4.53G [00:47<00:37, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 2.35G/4.53G [00:47<00:41, 52.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 2.37G/4.53G [00:47<00:41, 51.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 2.38G/4.53G [00:48<00:42, 50.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 2.40G/4.53G [00:48<00:41, 51.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 2.42G/4.53G [00:48<00:38, 55.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 2.43G/4.53G [00:48<00:35, 58.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 2.45G/4.53G [00:49<00:37, 55.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 2.46G/4.53G [00:49<00:38, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 2.48G/4.53G [00:49<00:35, 58.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 2.50G/4.53G [00:50<00:36, 55.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 2.51G/4.53G [00:50<00:42, 47.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 2.53G/4.53G [00:51<00:48, 41.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 2.54G/4.53G [00:51<01:00, 32.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 2.56G/4.53G [00:52<00:51, 38.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 2.58G/4.53G [00:52<00:44, 43.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 2.59G/4.53G [00:52<00:41, 46.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 2.61G/4.53G [00:52<00:37, 51.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 2.62G/4.53G [00:53<00:34, 54.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 2.64G/4.53G [00:53<00:31, 59.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 2.66G/4.53G [00:53<00:30, 60.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 2.67G/4.53G [00:53<00:27, 67.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 2.69G/4.53G [00:53<00:26, 68.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 2.70G/4.53G [00:54<00:27, 66.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 2.72G/4.53G [00:54<00:28, 64.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 2.74G/4.53G [00:54<00:29, 61.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 2.75G/4.53G [00:55<00:29, 60.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 2.77G/4.53G [00:55<00:30, 57.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 2.78G/4.53G [00:55<00:30, 56.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 2.80G/4.53G [00:56<00:32, 52.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 2.82G/4.53G [00:56<00:30, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 2.83G/4.53G [00:56<00:33, 50.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 2.85G/4.53G [00:57<00:34, 49.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 2.86G/4.53G [00:57<00:30, 54.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 2.88G/4.53G [00:57<00:43, 38.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 2.90G/4.53G [00:58<00:40, 40.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 2.91G/4.53G [00:58<00:37, 42.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 2.93G/4.53G [00:58<00:33, 47.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 2.94G/4.53G [00:59<00:29, 54.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 2.96G/4.53G [00:59<00:27, 57.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 2.98G/4.53G [00:59<00:27, 56.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 2.99G/4.53G [00:59<00:27, 56.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 3.01G/4.53G [01:00<00:25, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 3.02G/4.53G [01:00<00:22, 66.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 3.04G/4.53G [01:00<00:22, 66.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 3.06G/4.53G [01:00<00:23, 63.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 3.07G/4.53G [01:01<00:38, 38.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 3.09G/4.53G [01:02<00:37, 38.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 3.10G/4.53G [01:02<00:32, 44.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 3.12G/4.53G [01:02<00:28, 48.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 3.14G/4.53G [01:02<00:26, 52.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 3.15G/4.53G [01:03<00:25, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 3.17G/4.53G [01:03<00:25, 53.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 3.18G/4.53G [01:03<00:25, 52.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 3.20G/4.53G [01:03<00:24, 55.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 3.22G/4.53G [01:04<00:23, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.23G/4.53G [01:04<00:23, 55.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.25G/4.53G [01:04<00:22, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.26G/4.53G [01:05<00:22, 56.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.28G/4.53G [01:05<00:22, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 3.30G/4.53G [01:05<00:23, 53.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 3.31G/4.53G [01:05<00:20, 58.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 3.33G/4.53G [01:06<00:20, 57.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.34G/4.53G [01:06<00:22, 53.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.36G/4.53G [01:06<00:20, 57.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.38G/4.53G [01:06<00:18, 63.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 3.39G/4.53G [01:07<00:17, 64.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 3.41G/4.53G [01:07<00:16, 67.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 3.42G/4.53G [01:07<00:14, 74.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 3.44G/4.53G [01:07<00:15, 69.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 3.46G/4.53G [01:08<00:16, 65.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 3.47G/4.53G [01:08<00:25, 42.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 3.49G/4.53G [01:09<00:21, 47.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 3.50G/4.53G [01:09<00:18, 55.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 3.52G/4.53G [01:09<00:18, 54.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 3.54G/4.53G [01:10<00:22, 45.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 3.55G/4.53G [01:10<00:18, 51.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 3.57G/4.53G [01:10<00:17, 53.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 3.58G/4.53G [01:11<00:26, 36.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 3.60G/4.53G [01:11<00:23, 38.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 3.62G/4.53G [01:11<00:20, 45.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 3.63G/4.53G [01:12<00:18, 48.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 3.65G/4.53G [01:12<00:16, 53.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 3.66G/4.53G [01:12<00:16, 53.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.68G/4.53G [01:12<00:15, 54.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.70G/4.53G [01:13<00:15, 52.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.71G/4.53G [01:13<00:16, 49.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.73G/4.53G [01:13<00:16, 49.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 3.74G/4.53G [01:14<00:14, 54.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 3.76G/4.53G [01:14<00:13, 57.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 3.78G/4.53G [01:14<00:13, 55.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.79G/4.53G [01:15<00:13, 52.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.81G/4.53G [01:15<00:12, 56.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.82G/4.53G [01:15<00:12, 57.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 3.84G/4.53G [01:15<00:10, 62.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3.86G/4.53G [01:16<00:10, 63.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3.87G/4.53G [01:16<00:10, 62.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3.89G/4.53G [01:16<00:09, 66.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3.90G/4.53G [01:16<00:09, 63.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 3.92G/4.53G [01:17<00:10, 58.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 3.94G/4.53G [01:17<00:09, 59.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 3.95G/4.53G [01:17<00:09, 59.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 3.97G/4.53G [01:17<00:09, 61.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 3.98G/4.53G [01:18<00:10, 51.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 4.00G/4.53G [01:18<00:09, 55.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 4.02G/4.53G [01:18<00:08, 56.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 4.03G/4.53G [01:18<00:08, 60.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 4.05G/4.53G [01:19<00:08, 59.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 4.06G/4.53G [01:19<00:07, 62.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4.08G/4.53G [01:20<00:12, 34.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4.10G/4.53G [01:20<00:10, 40.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4.11G/4.53G [01:20<00:08, 46.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4.13G/4.53G [01:21<00:09, 44.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 4.14G/4.53G [01:21<00:08, 47.1MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 4.16G/4.53G [01:21<00:07, 47.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 4.18G/4.53G [01:22<00:07, 44.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 4.19G/4.53G [01:22<00:06, 47.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 4.21G/4.53G [01:22<00:05, 54.3MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 4.22G/4.53G [01:23<00:05, 51.8MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 4.24G/4.53G [01:23<00:05, 54.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 4.26G/4.53G [01:23<00:04, 59.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 4.27G/4.53G [01:23<00:04, 61.7MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 4.29G/4.53G [01:24<00:04, 56.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 4.30G/4.53G [01:24<00:03, 62.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 4.32G/4.53G [01:24<00:03, 62.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 4.34G/4.53G [01:24<00:03, 62.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 4.35G/4.53G [01:25<00:02, 63.9MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 4.37G/4.53G [01:25<00:02, 58.6MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 4.38G/4.53G [01:25<00:02, 61.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 4.40G/4.53G [01:26<00:02, 57.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 4.42G/4.53G [01:26<00:01, 57.5MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 4.43G/4.53G [01:26<00:01, 54.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 4.45G/4.53G [01:26<00:01, 56.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 4.46G/4.53G [01:27<00:01, 58.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 4.48G/4.53G [01:27<00:00, 59.2MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json:  99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 4.50G/4.53G [01:27<00:00, 58.0MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 4.51G/4.53G [01:27<00:00, 61.4MB/s]
ip-26-0-160-192_1146591.1719979661459804863.pt.trace.json: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4.53G/4.53G [01:28<00:00, 51.4MB/s]