File size: 210,240 Bytes
e186fd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 |
========================
START TIME: Wed Jul 3 02:11:24 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0703 02:11:27.417000 140025732028224 torch/distributed/run.py:757]
W0703 02:11:27.417000 140025732028224 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.417000 140025732028224 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.417000 140025732028224 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.417000 140181892396864 torch/distributed/run.py:757]
W0703 02:11:27.417000 140181892396864 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.417000 140181892396864 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.417000 140181892396864 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.419000 140088508618560 torch/distributed/run.py:757]
W0703 02:11:27.419000 140088508618560 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.419000 140088508618560 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.419000 140088508618560 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.426000 140471672833856 torch/distributed/run.py:757]
W0703 02:11:27.426000 140471672833856 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.426000 140471672833856 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.426000 140471672833856 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.428000 140515281438528 torch/distributed/run.py:757]
W0703 02:11:27.428000 140515281438528 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.428000 140515281438528 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.428000 140515281438528 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.430000 140513055242048 torch/distributed/run.py:757]
W0703 02:11:27.430000 140513055242048 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.430000 140513055242048 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.430000 140513055242048 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.432000 140355073300288 torch/distributed/run.py:757]
W0703 02:11:27.432000 140355073300288 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.432000 140355073300288 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.432000 140355073300288 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.498000 139778136758080 torch/distributed/run.py:757]
W0703 02:11:27.498000 139778136758080 torch/distributed/run.py:757] *****************************************
W0703 02:11:27.498000 139778136758080 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0703 02:11:27.498000 139778136758080 torch/distributed/run.py:757] *****************************************
[default0]:07/03/2024 02:11:48 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Vocab Size Padding] Padded vocab (size: 50257) with 15 dummy tokens (new size: 50272)
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config:
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: run='%date_%jobid',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: seed=42,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: step=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: consumed_train_samples=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: benchmark_csv_path=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: ignore_sanity_checks=True),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: parallelism=ParallelismArgs(dp=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pp=4,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp=16,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f98a08d0670>,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tp_linear_async_communication=False,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: expert_parallel_size=1),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: eos_token_id=2,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_act='silu',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_size=2048,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: initializer_range=0.02,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: intermediate_size=4096,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: is_llama_config=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: max_position_embeddings=4096,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_attention_heads=32,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_hidden_layers=24,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_key_value_heads=32,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pad_token_id=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pretraining_tp=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rms_norm_eps=1e-05,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_scaling=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_theta=10000.0,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tie_word_embeddings=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: use_cache=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: vocab_size=50272),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: init_method=RandomInit(std=0.025),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dtype=torch.bfloat16,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: make_vocab_size_divisible_by=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: ddp_bucket_cap_mb=25),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer_revision=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokenizer_max_length=None),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoint_interval=100000,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: save_initial_state=False,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: resume_checkpoint_path=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: checkpoints_path_is_shared_file_system=False),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: logging=LoggingArgs(log_level='info',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: log_level_replica='info',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: iteration_step_info_interval=1),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: train_steps=20,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: micro_batch_size=64,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: batch_accumulation_per_replica=16,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: val_check_interval=-1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: limit_val_batches=0,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: limit_test_batches=0),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: adam_beta1=0.9,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: adam_beta2=0.95,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: torch_adam_is_fused=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: name='adamW'),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: zero_stage=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: weight_decay=0.01,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: clip_grad=1.0,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: accumulate_grad_in_fp32=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_warmup_steps=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_warmup_style='linear',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_style='linear',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_steps=19,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lr_decay_starting_step=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: min_decay_lr=1e-05)),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: start_training_step=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hf_dataset_splits='train',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hf_dataset_config_name=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dataset_processing_num_proc_per_process=64,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: dataset_overwrite_cache=False,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: text_column_name='text'),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: seed=42,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_loading_workers=0))],
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/64_GPUS/dp-1_tp-16_pp-4_mbz-64')),
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: lighteval=None)
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Model Config:
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: LlamaConfig(bos_token_id=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: eos_token_id=2,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_act='silu',
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: hidden_size=2048,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: initializer_range=0.02,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: intermediate_size=4096,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: is_llama_config=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: max_position_embeddings=4096,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_attention_heads=32,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_hidden_layers=24,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: num_key_value_heads=32,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pad_token_id=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: pretraining_tp=1,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rms_norm_eps=1e-05,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_scaling=None,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: rope_theta=10000.0,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: tie_word_embeddings=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: use_cache=True,
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: vocab_size=50272)
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Building model..
[default0]:07/03/2024 02:11:48 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Setting PP block ranks...
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=12|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=12|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=12|ip-26-0-163-226]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=11|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=11|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=11|ip-26-0-163-226]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=11|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=11|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=9|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=9|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=9|ip-26-0-161-178]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=11|ip-26-0-161-178]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=13|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=13|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=13|ip-26-0-163-226]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=8|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=8|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=8|ip-26-0-161-178]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=8|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=8|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=8|ip-26-0-163-226]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=7|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=6|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=6|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=7|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=7|ip-26-0-172-57]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=6|ip-26-0-172-57]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=8|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=8|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=8|ip-26-0-172-73]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=12|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=12|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=12|ip-26-0-172-73]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=13|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=13|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=13|ip-26-0-172-73]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=12|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=12|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=2|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=2|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=2|ip-26-0-163-220]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=12|ip-26-0-161-178]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=4|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=4|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=4|ip-26-0-163-220]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=13|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=13|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=13|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=6|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=6|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=9|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=9|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=2|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=2|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=2|ip-26-0-168-238]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=6|ip-26-0-163-220]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=9|ip-26-0-163-226]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=7|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=7|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=7|ip-26-0-168-238]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=5|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=5|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=5|ip-26-0-163-220]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=9|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=8|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=9|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=9|ip-26-0-169-86]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=8|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=8|ip-26-0-169-86]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=12|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=12|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=12|ip-26-0-169-86]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=6|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=6|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=6|ip-26-0-168-238]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=7|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=7|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=7|ip-26-0-163-220]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=3|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=3|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=3|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Total number of parameters: 1.21G (2315.81MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=9|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=9|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=5|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=5|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=5|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Parametrizing model parameters using StandardParametrizator
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=9|ip-26-0-172-73]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=11|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=11|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=11|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=7|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=7|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=7|ip-26-0-160-192]: No checkpoint path provided.
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=2|ip-26-0-160-192]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=3|ip-26-0-160-192]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=4|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=4|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=4|ip-26-0-160-192]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=0|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=0|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=0|ip-26-0-168-238]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=5|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=1|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=13|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=13|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=13|ip-26-0-169-86]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=5|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=5|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=1|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=2|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=2|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=2|ip-26-0-172-57]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=6|ip-26-0-160-192]: Local number of parameters: 24.8M (47.33MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=6|ip-26-0-160-192]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=6|ip-26-0-160-192]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=4|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=4|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=4|ip-26-0-172-57]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=1|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=1|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=1|ip-26-0-168-238]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=3|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=3|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=3|ip-26-0-168-238]: No checkpoint path provided.
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=4|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=4|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default4]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=4|ip-26-0-168-238]: No checkpoint path provided.
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=5|ip-26-0-168-238]: Local number of parameters: 15.8M (30.05MiB)
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=5|ip-26-0-168-238]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default5]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=5|ip-26-0-168-238]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=11|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=11|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=11|ip-26-0-169-86]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=14|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=14|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=14|ip-26-0-169-86]: No checkpoint path provided.
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=10|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=10|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=10|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=14|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=14|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=14|ip-26-0-163-226]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=0|ip-26-0-172-57]: Local number of parameters: 16.9M (32.31MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=0|ip-26-0-172-57]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=0|ip-26-0-172-57]: No checkpoint path provided.
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=3|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=3|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default3]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=3|ip-26-0-163-220]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=1|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=1|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=1|ip-26-0-163-220]: No checkpoint path provided.
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=0|ip-26-0-163-220]: Local number of parameters: 18.4M (35.05MiB)
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=0|ip-26-0-163-220]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default0]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=0|ip-26-0-163-220]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=15|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=15|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=15|ip-26-0-161-178]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=14|ip-26-0-161-178]: Local number of parameters: 24.8M (47.33MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=14|ip-26-0-161-178]: [After model building] Memory usage: 55.07MiB. Peak allocated: 57.10MiB Peak reserved: 74.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=15|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=15|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=15|ip-26-0-163-226]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=14|ip-26-0-161-178]: No checkpoint path provided.
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=10|ip-26-0-163-226]: Local number of parameters: 18.4M (35.05MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=10|ip-26-0-163-226]: [After model building] Memory usage: 43.07MiB. Peak allocated: 45.10MiB Peak reserved: 60.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=1|TP=10|ip-26-0-163-226]: No checkpoint path provided.
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=10|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=10|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=10|ip-26-0-169-86]: No checkpoint path provided.
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=10|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=10|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default2]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=10|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=15|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=15|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=15|ip-26-0-172-73]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=0|TP=1|ip-26-0-160-192]: No checkpoint path provided.
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=14|ip-26-0-172-73]: Local number of parameters: 16.9M (32.31MiB)
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=14|ip-26-0-172-73]: [After model building] Memory usage: 36.32MiB. Peak allocated: 38.35MiB Peak reserved: 48.00MiB
[default6]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=14|ip-26-0-172-73]: No checkpoint path provided.
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=15|ip-26-0-169-86]: Local number of parameters: 15.8M (30.05MiB)
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=15|ip-26-0-169-86]: [After model building] Memory usage: 37.06MiB. Peak allocated: 39.09MiB Peak reserved: 58.00MiB
[default7]:07/03/2024 02:12:05 [INFO|DP=0|PP=2|TP=15|ip-26-0-169-86]: No checkpoint path provided.
[default1]:07/03/2024 02:12:05 [INFO|DP=0|PP=3|TP=1|ip-26-0-172-57]: No checkpoint path provided.
[default0]:07/03/2024 02:12:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/03/2024 02:12:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/03/2024 02:12:07 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [ZeRO sharding] DP Rank 0 has 24.8M out of 24.8M (100.00%) params' optimizer states
[default0]:07/03/2024 02:12:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/03/2024 02:12:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Using `datasets` library
[default0]:07/03/2024 02:12:09 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:07/03/2024 02:12:09 [WARNING|DP=0|PP=0|TP=0|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Training Plan] There are 1 training stages
[default0]:07/03/2024 02:12:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Stage Training Stage] start from step 1
[default0]:07/03/2024 02:12:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]:
[default0]:07/03/2024 02:12:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: [Start training] datetime: 2024-07-03 02:12:11.369396 | mbs: 64 | grad_accum: 16 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/03/2024 02:12:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/03/2024 02:12:11 [INFO|DP=0|PP=0|TP=0|ip-26-0-160-192]: Memory usage: 244.38MiB. Peak allocated 244.38MiB. Peak reserved: 266.00MiB
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=3|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=8|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=0|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=13|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=10|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=12|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=2|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=13|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=15|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=4|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=11|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=9|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=11|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=8|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=0|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=1|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=6|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=7|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=12|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=8|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=4|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=15|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=9|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=13|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=14|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=6|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=8|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=10|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=15|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=1|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=3|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=5|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=9|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=4|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=6|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=1|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=3|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=5|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=14|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=10|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=11|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=13|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=0|TP=15|ip-26-0-161-178]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=12|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=2|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=2|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=6|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=7|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=14|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=2|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=5|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=12|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=7|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/03/2024 02:12:11 [WARNING|DP=0|PP=1|TP=5|ip-26-0-163-220]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=11|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/03/2024 02:12:11 [WARNING|DP=0|PP=2|TP=0|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:11 [WARNING|DP=0|PP=3|TP=1|ip-26-0-172-57]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/03/2024 02:12:12 [WARNING|DP=0|PP=1|TP=14|ip-26-0-163-226]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/03/2024 02:12:12 [WARNING|DP=0|PP=0|TP=3|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/03/2024 02:12:12 [WARNING|DP=0|PP=2|TP=9|ip-26-0-169-86]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/03/2024 02:12:12 [WARNING|DP=0|PP=3|TP=10|ip-26-0-172-73]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/03/2024 02:12:12 [WARNING|DP=0|PP=2|TP=4|ip-26-0-168-238]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/03/2024 02:12:12 [WARNING|DP=0|PP=0|TP=7|ip-26-0-160-192]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:[rank9]: Traceback (most recent call last):
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank9]: trainer.train(dataloader)
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank9]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank9]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default1]:[rank9]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank9]: output = model(**micro_batch)
[default5]:[rank13]: Traceback (most recent call last):
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank14]: Traceback (most recent call last):
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank13]: trainer.train(dataloader)
[default3]:[rank11]: Traceback (most recent call last):
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank9]: return self._call_impl(*args, **kwargs)
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank14]: trainer.train(dataloader)
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank9]: return forward_call(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank14]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default5]:[rank13]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank11]: trainer.train(dataloader)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default5]:[rank13]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank9]: sharded_logits = self.model(
[default2]:[rank10]: Traceback (most recent call last):
[default3]:[rank11]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank14]: outputs = self.pipeline_engine.train_batch_iter(
[default5]:[rank13]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank10]: trainer.train(dataloader)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank9]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank13]: output = model(**micro_batch)
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default3]:[rank11]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank9]: return forward_call(*args, **kwargs)
[default2]:[rank10]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank14]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default5]:[rank13]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank10]: outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank14]: output = model(**micro_batch)
[default1]:[rank9]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank11]: output = model(**micro_batch)
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank14]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank13]: return forward_call(*args, **kwargs)
[default2]:[rank10]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank9]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank11]: return self._call_impl(*args, **kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank10]: output = model(**micro_batch)
[default6]:[rank14]: return forward_call(*args, **kwargs)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank10]: return self._call_impl(*args, **kwargs)
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank13]: sharded_logits = self.model(
[default1]:[rank9]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank9]: return forward_call(*args, **kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank14]: sharded_logits = self.model(
[default3]:[rank11]: return forward_call(*args, **kwargs)
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]:[rank13]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank11]: sharded_logits = self.model(
[default2]:[rank10]: return forward_call(*args, **kwargs)
[default1]:[rank9]: output = self.pp_block(**new_kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank14]: return self._call_impl(*args, **kwargs)
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank13]: return forward_call(*args, **kwargs)
[default3]:[rank11]: return self._call_impl(*args, **kwargs)
[default6]:[rank14]: return forward_call(*args, **kwargs)
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]:[rank14]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank10]: sharded_logits = self.model(
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: Traceback (most recent call last):
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank13]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank11]: return forward_call(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank12]: Traceback (most recent call last):
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank14]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank15]: trainer.train(dataloader)
[default4]:[rank12]: trainer.train(dataloader)
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank11]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank9]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank14]: return self._call_impl(*args, **kwargs)
[default2]:[rank10]: return self._call_impl(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank9]: return forward_call(*args, **kwargs)
[default7]:[rank15]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]:[rank13]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank14]: return forward_call(*args, **kwargs)
[default4]:[rank12]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default3]:[rank11]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank12]: outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank15]: outputs = self.pipeline_engine.train_batch_iter(
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank10]: return forward_call(*args, **kwargs)
[default6]:[rank14]: output = self.pp_block(**new_kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default3]:[rank11]: return self._call_impl(*args, **kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default2]:[rank10]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank15]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank14]: return self._call_impl(*args, **kwargs)
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank9]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default3]:[rank11]: return forward_call(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]:[rank13]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: output = self.pp_block(**new_kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank10]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank15]: output = model(**micro_batch)
[default6]:[rank14]: return forward_call(*args, **kwargs)
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank10]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: return forward_call(*args, **kwargs)
[default6]:[rank14]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank10]: return forward_call(*args, **kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank9]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]:[rank13]: output = self.pp_block(**new_kwargs)
[default2]:[rank10]: output = self.pp_block(**new_kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank9]: return forward_call(*args, **kwargs)
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default5]:[rank13]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank13]: return forward_call(*args, **kwargs)
[default4]:[rank12]: output = model(**micro_batch)
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default1]:[rank9]: output = self.o_proj(attention_output)
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank14]: return self._call_impl(*args, **kwargs)
[default7]:[rank15]: return self._call_impl(*args, **kwargs)
[default2]:[rank10]: return self._call_impl(*args, **kwargs)
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank11]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank9]: return self._call_impl(*args, **kwargs)
[default5]:[rank13]: return self._call_impl(*args, **kwargs)
[default6]:[rank14]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank9]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: return forward_call(*args, **kwargs)
[default3]:[rank11]: return forward_call(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank13]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank14]: return forward_call(*args, **kwargs)
[default3]:[rank11]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default2]:[rank10]: return forward_call(*args, **kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default4]:[rank12]: return forward_call(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank10]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank9]: return forward_call(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank12]: sharded_logits = self.model(
[default6]:[rank14]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 565, in forward
[default7]:[rank15]: sharded_logits = self.model(
[default2]:[rank10]: return self._call_impl(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank14]: key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank13]: return forward_call(*args, **kwargs)
[default4]:[rank12]: return self._call_impl(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]: return forward_call(*args, **kwargs)
[default2]:[rank10]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank10]: return forward_call(*args, **kwargs)
[default6]:[rank14]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU has a total capacity of 79.33 GiB of which 79.94 MiB is free. Including non-PyTorch memory, this process has 79.24 GiB memory in use. Of the allocated memory 69.33 GiB is allocated by PyTorch, and 61.28 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank15]: return self._call_impl(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank10]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 565, in forward
[default2]:[rank10]: key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank11]: return self._call_impl(*args, **kwargs)
[default7]:[rank15]: return forward_call(*args, **kwargs)
[default1]:[rank9]: return row_linear(
[default1]:[rank9]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default5]:[rank13]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 565, in forward
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank15]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank12]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank10]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU has a total capacity of 79.33 GiB of which 79.94 MiB is free. Including non-PyTorch memory, this process has 79.24 GiB memory in use. Of the allocated memory 69.33 GiB is allocated by PyTorch, and 61.28 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default3]:[rank11]: return forward_call(*args, **kwargs)
[default1]:[rank9]: out = F.linear(input, weight, bias)
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default5]:[rank13]: key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
[default1]:[rank9]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 39.94 MiB is free. Including non-PyTorch memory, this process has 79.28 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 59.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank11]: output = self.o_proj(attention_output)
[default4]:[rank12]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]:[rank13]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU has a total capacity of 79.33 GiB of which 103.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 69.33 GiB is allocated by PyTorch, and 125.28 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank15]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank11]: return self._call_impl(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: return forward_call(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: return forward_call(*args, **kwargs)
[default3]:[rank11]: return row_linear(
[default4]:[rank12]: return forward_call(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]:[rank15]: output = self.pp_block(**new_kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]:[rank12]: output = self.pp_block(**new_kwargs)
[default3]:[rank11]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default3]:[rank11]: out = F.linear(input, weight, bias)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: return self._call_impl(*args, **kwargs)
[default3]:[rank11]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 39.94 MiB is free. Including non-PyTorch memory, this process has 79.28 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 59.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank15]: return self._call_impl(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]: return forward_call(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default7]:[rank15]: return forward_call(*args, **kwargs)
[default4]:[rank12]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: return self._call_impl(*args, **kwargs)
[default4]:[rank12]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default7]:[rank15]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default4]:[rank12]: return forward_call(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank12]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 565, in forward
[default4]:[rank12]: key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
[default7]:[rank15]: return self._call_impl(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank12]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU has a total capacity of 79.33 GiB of which 79.94 MiB is free. Including non-PyTorch memory, this process has 79.24 GiB memory in use. Of the allocated memory 69.33 GiB is allocated by PyTorch, and 61.28 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank15]: return forward_call(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default7]:[rank15]: output = self.o_proj(attention_output)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank15]: return self._call_impl(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank15]: return forward_call(*args, **kwargs)
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default7]:[rank15]: return row_linear(
[default7]:[rank15]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default7]:[rank15]: out = F.linear(input, weight, bias)
[default7]:[rank15]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 39.94 MiB is free. Including non-PyTorch memory, this process has 79.28 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 59.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank8]: Traceback (most recent call last):
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank8]: trainer.train(dataloader)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank8]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank8]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank8]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank8]: output = model(**micro_batch)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank8]: sharded_logits = self.model(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank8]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank8]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank8]: output = self.pp_block(**new_kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default0]:[rank8]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 565, in forward
[default0]:[rank8]: key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
[default0]:[rank8]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU
[default6]:[rank6]: Traceback (most recent call last):
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default6]:[rank6]: trainer.train(dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default6]:[rank6]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default6]:[rank6]: outputs = self.pipeline_engine.train_batch_iter(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default6]:[rank6]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default6]:[rank6]: output = model(**micro_batch)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default6]:[rank6]: sharded_logits = self.model(
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default6]:[rank6]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default6]:[rank6]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default6]:[rank6]: output = self.pp_block(**new_kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default6]:[rank6]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default6]:[rank6]: output = self.o_proj(attention_output)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default6]:[rank6]: return self._call_impl(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default6]:[rank6]: return forward_call(*args, **kwargs)
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default6]:[rank6]: return row_linear(
[default6]:[rank6]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default6]:[rank6]: out = F.linear(input, weight, bias)
[default6]:[rank6]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 575.94 MiB is free. Including non-PyTorch memory, this process has 78.76 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default7]:[rank7]: Traceback (most recent call last):
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default7]:[rank7]: trainer.train(dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default7]:[rank7]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default7]:[rank7]: outputs = self.pipeline_engine.train_batch_iter(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default7]:[rank7]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default7]:[rank7]: output = model(**micro_batch)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default7]:[rank7]: sharded_logits = self.model(
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default7]:[rank7]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default7]:[rank7]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default7]:[rank7]: output = self.pp_block(**new_kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default7]:[rank7]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default7]:[rank7]: output = self.o_proj(attention_output)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default7]:[rank7]: return self._call_impl(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default7]:[rank7]: return forward_call(*args, **kwargs)
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default7]:[rank7]: return row_linear(
[default7]:[rank7]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default7]:[rank7]: out = F.linear(input, weight, bias)
[default7]:[rank7]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 487.94 MiB is free. Including non-PyTorch memory, this process has 78.84 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default3]:[rank3]: Traceback (most recent call last):
[default2]:[rank2]: Traceback (most recent call last):
[default0]:[rank0]: Traceback (most recent call last):
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default3]:[rank3]: trainer.train(dataloader)
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]: trainer.train(dataloader)
[default1]:[rank1]: trainer.train(dataloader)
[default0]:[rank0]: trainer.train(dataloader)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default2]:[rank2]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default3]:[rank3]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]: outputs = self.pipeline_engine.train_batch_iter(
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default3]:[rank3]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default2]:[rank2]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]: output = model(**micro_batch)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: output = model(**micro_batch)
[default0]:[rank0]: output = model(**micro_batch)
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default3]:[rank3]: output = model(**micro_batch)
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default2]:[rank2]: sharded_logits = self.model(
[default1]:[rank1]: sharded_logits = self.model(
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: sharded_logits = self.model(
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default3]:[rank3]: sharded_logits = self.model(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default3]:[rank3]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default3]:[rank3]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default2]:[rank2]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: output = self.pp_block(**new_kwargs)
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default1]:[rank1]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default3]:[rank3]: output = self.pp_block(**new_kwargs)
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default2]:[rank2]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default1]:[rank1]: output = self.o_proj(attention_output)
[default0]:[rank0]: output = self.pp_block(**new_kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default2]:[rank2]: output = self.o_proj(attention_output)
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default3]:[rank3]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return row_linear(
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: out = F.linear(input, weight, bias)
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 487.94 MiB is free. Including non-PyTorch memory, this process has 78.84 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default2]:[rank2]: return self._call_impl(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default2]:[rank2]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: output = self.o_proj(attention_output)
[default0]:[rank0]: output = self.o_proj(attention_output)
[default2]:[rank2]: return forward_call(*args, **kwargs)
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default3]:[rank3]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default3]:[rank3]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default2]:[rank2]: return row_linear(
[default3]:[rank3]: return forward_call(*args, **kwargs)
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default2]:[rank2]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default2]:[rank2]: out = F.linear(input, weight, bias)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default3]:[rank3]: return row_linear(
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default2]:[rank2]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 575.94 MiB is free. Including non-PyTorch memory, this process has 78.76 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default0]:[rank0]: return row_linear(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default0]:[rank0]: out = F.linear(input, weight, bias)
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU
[default3]:[rank3]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default3]:[rank3]: out = F.linear(input, weight, bias)
[default3]:[rank3]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 487.94 MiB is free. Including non-PyTorch memory, this process has 78.84 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default5]:[rank5]: Traceback (most recent call last):
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default5]:[rank5]: trainer.train(dataloader)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default5]:[rank5]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default5]:[rank5]: outputs = self.pipeline_engine.train_batch_iter(
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default5]:[rank5]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default5]:[rank5]: output = model(**micro_batch)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default5]:[rank5]: sharded_logits = self.model(
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default5]:[rank5]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default5]:[rank5]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default5]:[rank5]: output = self.pp_block(**new_kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default5]:[rank5]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default5]:[rank5]: output = self.o_proj(attention_output)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default5]:[rank5]: return self._call_impl(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default5]:[rank5]: return forward_call(*args, **kwargs)
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default5]:[rank5]: return row_linear(
[default5]:[rank5]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default5]:[rank5]: out = F.linear(input, weight, bias)
[default5]:[rank5]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 487.94 MiB is free. Including non-PyTorch memory, this process has 78.84 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default4]:[rank4]: Traceback (most recent call last):
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default4]:[rank4]: trainer.train(dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default4]:[rank4]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default4]:[rank4]: outputs = self.pipeline_engine.train_batch_iter(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default4]:[rank4]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default4]:[rank4]: output = model(**micro_batch)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default4]:[rank4]: sharded_logits = self.model(
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default4]:[rank4]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default4]:[rank4]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default4]:[rank4]: output = self.pp_block(**new_kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default4]:[rank4]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 598, in forward
[default4]:[rank4]: output = self.o_proj(attention_output)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default4]:[rank4]: return self._call_impl(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default4]:[rank4]: return forward_call(*args, **kwargs)
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 159, in forward
[default4]:[rank4]: return row_linear(
[default4]:[rank4]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 474, in row_linear
[default4]:[rank4]: out = F.linear(input, weight, bias)
[default4]:[rank4]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 MiB. GPU has a total capacity of 79.33 GiB of which 575.94 MiB is free. Including non-PyTorch memory, this process has 78.76 GiB memory in use. Of the allocated memory 69.46 GiB is allocated by PyTorch, and 123.27 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default1]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default1]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default3]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default3]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
E0703 02:12:44.911000 140513055242048 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 511973) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
E0703 02:12:44.913000 140515281438528 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 1125019) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 1 (local_rank: 1)
exitcode : 1 (pid: 1125020)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 2 (local_rank: 2)
exitcode : 1 (pid: 1125021)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 3 (local_rank: 3)
exitcode : 1 (pid: 1125022)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[4]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 4 (local_rank: 4)
exitcode : 1 (pid: 1125023)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[5]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 5 (local_rank: 5)
exitcode : 1 (pid: 1125024)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[6]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 6 (local_rank: 6)
exitcode : 1 (pid: 1125025)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[7]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 7 (local_rank: 7)
exitcode : 1 (pid: 1125026)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-03_02:12:44
host : ip-26-0-160-192.ec2.internal
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 1125019)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
[1]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 9 (local_rank: 1)
exitcode : 1 (pid: 511974)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[2]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 10 (local_rank: 2)
exitcode : 1 (pid: 511975)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[3]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 11 (local_rank: 3)
exitcode : 1 (pid: 511976)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[4]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 12 (local_rank: 4)
exitcode : 1 (pid: 511977)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[5]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 13 (local_rank: 5)
exitcode : 1 (pid: 511978)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[6]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 14 (local_rank: 6)
exitcode : 1 (pid: 511979)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
[7]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 15 (local_rank: 7)
exitcode : 1 (pid: 511980)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-03_02:12:44
host : ip-26-0-161-178.ec2.internal
rank : 8 (local_rank: 0)
exitcode : 1 (pid: 511973)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
srun: error: ip-26-0-161-178: task 1: Exited with exit code 1
srun: error: ip-26-0-160-192: task 0: Exited with exit code 1
W0703 02:12:48.783000 140020071294720 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-163-220.ec2.internal_761797_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:49.549000 140082847885056 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-172-57.ec2.internal_1048111_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:49.699000 140349412566784 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-169-86.ec2.internal_1822398_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:49.702000 140176231663360 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-172-73.ec2.internal_890715_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:49.728000 139772476024576 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-168-238.ec2.internal_1848651_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:49.747000 140466012100352 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-163-226.ec2.internal_3207894_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:49.797000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207965 closing signal SIGTERM
W0703 02:12:49.795000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761868 closing signal SIGTERM
W0703 02:12:49.797000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207966 closing signal SIGTERM
W0703 02:12:49.795000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761869 closing signal SIGTERM
W0703 02:12:49.797000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207967 closing signal SIGTERM
W0703 02:12:49.795000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761870 closing signal SIGTERM
W0703 02:12:49.797000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207968 closing signal SIGTERM
W0703 02:12:49.795000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761871 closing signal SIGTERM
W0703 02:12:49.797000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761872 closing signal SIGTERM
W0703 02:12:49.798000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207969 closing signal SIGTERM
W0703 02:12:49.799000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048182 closing signal SIGTERM
W0703 02:12:49.797000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761873 closing signal SIGTERM
W0703 02:12:49.799000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048183 closing signal SIGTERM
W0703 02:12:49.797000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761874 closing signal SIGTERM
W0703 02:12:49.799000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048184 closing signal SIGTERM
W0703 02:12:49.799000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048185 closing signal SIGTERM
W0703 02:12:49.798000 140025732028224 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 761875 closing signal SIGTERM
W0703 02:12:49.799000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890786 closing signal SIGTERM
W0703 02:12:49.801000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048186 closing signal SIGTERM
W0703 02:12:49.799000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890787 closing signal SIGTERM
W0703 02:12:49.800000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848721 closing signal SIGTERM
W0703 02:12:49.801000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848722 closing signal SIGTERM
W0703 02:12:49.801000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848723 closing signal SIGTERM
W0703 02:12:49.802000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207970 closing signal SIGTERM
W0703 02:12:49.799000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890788 closing signal SIGTERM
W0703 02:12:49.800000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890789 closing signal SIGTERM
W0703 02:12:49.801000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890790 closing signal SIGTERM
W0703 02:12:49.801000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848724 closing signal SIGTERM
W0703 02:12:49.801000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890791 closing signal SIGTERM
W0703 02:12:49.804000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207971 closing signal SIGTERM
W0703 02:12:49.804000 140471672833856 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3207972 closing signal SIGTERM
W0703 02:12:49.802000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890792 closing signal SIGTERM
W0703 02:12:49.804000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048187 closing signal SIGTERM
W0703 02:12:49.804000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048188 closing signal SIGTERM
W0703 02:12:49.803000 140181892396864 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 890793 closing signal SIGTERM
W0703 02:12:49.803000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822468 closing signal SIGTERM
W0703 02:12:49.803000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822469 closing signal SIGTERM
W0703 02:12:49.805000 140088508618560 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1048189 closing signal SIGTERM
W0703 02:12:49.803000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822470 closing signal SIGTERM
W0703 02:12:49.805000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848725 closing signal SIGTERM
W0703 02:12:49.804000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822471 closing signal SIGTERM
W0703 02:12:49.806000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848726 closing signal SIGTERM
W0703 02:12:49.806000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848727 closing signal SIGTERM
W0703 02:12:49.806000 139778136758080 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1848728 closing signal SIGTERM
W0703 02:12:49.806000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822472 closing signal SIGTERM
W0703 02:12:49.807000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822473 closing signal SIGTERM
W0703 02:12:49.807000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822474 closing signal SIGTERM
W0703 02:12:49.808000 140355073300288 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 1822475 closing signal SIGTERM
W0703 02:12:53.787000 140020071294720 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-163-220.ec2.internal_761797_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:54.554000 140082847885056 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-172-57.ec2.internal_1048111_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:54.704000 140349412566784 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-169-86.ec2.internal_1822398_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:54.707000 140176231663360 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-172-73.ec2.internal_890715_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:54.732000 139772476024576 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-168-238.ec2.internal_1848651_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:54.752000 140466012100352 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-163-226.ec2.internal_3207894_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:58.791000 140020071294720 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-163-220.ec2.internal_761797_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:58.935000 140181892396864 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-172-73.ec2.internal_890715_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:58.946000 140181892396864 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-172-73.ec2.internal_890715_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-172-73: task 7: Exited with exit code 1
W0703 02:12:59.558000 140082847885056 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-172-57.ec2.internal_1048111_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:59.708000 140349412566784 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-169-86.ec2.internal_1822398_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:59.738000 139772476024576 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-168-238.ec2.internal_1848651_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:12:59.756000 140466012100352 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-163-226.ec2.internal_3207894_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:13:02.744000 140088508618560 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-172-57.ec2.internal_1048111_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:13:02.754000 140088508618560 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-172-57.ec2.internal_1048111_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-172-57: task 6: Exited with exit code 1
W0703 02:13:03.239000 140025732028224 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-163-220.ec2.internal_761797_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:13:03.252000 140025732028224 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-163-220.ec2.internal_761797_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-163-220: task 2: Exited with exit code 1
W0703 02:13:03.645000 140355073300288 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-86.ec2.internal_1822398_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:13:03.656000 140355073300288 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-169-86.ec2.internal_1822398_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
W0703 02:13:03.944000 139778136758080 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-168-238.ec2.internal_1848651_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:13:03.957000 139778136758080 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-168-238.ec2.internal_1848651_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-169-86: task 5: Exited with exit code 1
W0703 02:13:04.139000 140471672833856 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-163-226.ec2.internal_3207894_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0703 02:13:04.150000 140471672833856 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-163-226.ec2.internal_3207894_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-168-238: task 4: Exited with exit code 1
srun: error: ip-26-0-163-226: task 3: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|